
www.manaraa.com

www.manaraa.com

Software Engineering for
Parallel and Distributed Systems

www.manaraa.com

IFIP -The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for societies
working in information processing, IFIP's aim is two-fold: to support information processing
within its member countries and to encourage technology transfer to developing nations. As
its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of information
technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications. IFIP's
events range from an international congress to local seminars, but the most important are:

• the IFIP World Computer Congress, held every second year;
• open conferences;
• working conferences.

The flagship event is the IFIP World Computer Congress. at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the rejection
rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an atmosphere
conducive to innovation and development. Refereeing is less rigorous and papers are
subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings, while
the results of the working conferences are often published as collections of selected and
edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies preferring a
less committed involvement may apply for associate or corresponding membership. Associate
members enjoy the same benefits as full members, but without voting rights. Corresponding
members are not represented in IFIP bodies. Affiliated membership is open to non-national
societies, and individual and honorary membership schemes are also offered.

www.manaraa.com

Software Engineering for
Parallel and
Distributed Systems

Proceedings of the First IFIP TC1 0 International
Workshop on Parallel and Distributed Software
Engineering, March 1996

Edited by
Innes Jelly
Sheffield Hallam University
Sheffield
UK

lan Gorton
CSJRO Division of Information Technology
Australia

and

Peter Croll
University of Sheffield
Sheffield
UK

~~~11 SPRINGER INTERNATIONAL PUBLISHING, CHAM 



www.manaraa.com

First edition 1996 

© 1996 IFIP International Federation for Information Processing 

Originally published by Chapman & Hall in 1996 
Softcover reprint of the hardcover l st edition 1996 

Apart from any fair dealing for the purposes of research or private study, or 
criticism or review, as permitted under the UK Copyright, Designs and Patents 
Act, 1988, this publication may not be reproduced, stored, or transmitted, in any 
form or by any means, without the prior permission in writing of the publishers, 
or in the case of reprographic reproduction only in accordance with the terms of 
the licences issued by the Copyright Licensing Agency in the UK, or in 
accordance with the terms of licences issued by the appropriate Reproduction 
Rights Organization outside !he UK. Enquiries concerning reproduction outside 
the terms stated here should be sent to the publishers at the London address 
printed on this page. 

The publisher makes no representation, express or implied, with regard to the 
accuracy of the information contained in this book and cannot accept any legal 
responsibility or liability for any errors or omissions that may be made. 

A catalogue record for this book is available from the British Library 

~ Printed on permanent acid-free text paper, manufactured in accordance 
with ANSI/NISO Z39.48-1984 and ANSI/NISO Z39.48-1984 (Permanence 
of Paper). 

ISBN 978-1-5041-2948-0 ISBN 978-0-387-34984-8 (eBook)
DOI 10.1007/978-0-387-34984-8



www.manaraa.com

CONTENTS 

Preface ix 

Part One Research Papers 

1 Infrastructural software for model driven distributed 
manufacturing systems 1 
I. Coutts, M. Aguiar and J. Edwards 

2 Methodology and tools for the development of high 
performance parallel systems with SDL/MSCs 15 
A. Mitschele-Thiel 

3 Designing and implementing complex systems with agents 27 
P. Marcenac, S. Giroux and J.R. Grasso 

4 Communications are everything: a design methodology for 
fault-tolerant concurrent systems 39 
A.M. 7.Yrrell 

5 Designing distributed multimedia systems using PARSE 50 
A. Y. Liu, T.S. Chan and I. Gorton 

6 Hypersequential programming- a novel paradigm for 
concurrent programming 62 
N. Uchihira, S. Honiden and T. Seki 

7 Efficient composition and automatic initialization of arbitrary 
structured PVM programs 74 
J. Y. Cotronis 

8 Arcadia: a platform for the study of dynamic scheduling of 
communicating processes 86 
C. Bernon, C. B~tourn~ and A. Sayah 

9 Interactive testing tool for parallel programs 98 
H. Krawczyk and B. Wiszniewski 



www.manaraa.com

vi Contents 

10 Cerberus - a tool for debugging distributed algorithms 110 
F. Carter and A. Fekete 

11 Debugging parallel programs using temporal logic 
specifications 122 
M. Frey 

12 OPERA: a toolbox for loop parallelization 134 
V. Loechner and C. Mongenet 

13 Program comprehension engines for automatic parallelization: 
a comparative study 146 
B. di Martino and C. W. Kessler 

14 Concurrent semantics for structured design methods 158 
P. A. Nixon and L. Shi 

15 Towards a theory of shared data in distributed systems 170 
S. Dobson and C.P. Wadsworth 

16 Using concurrency and formal methods for the design 
of safe process control 183 
T. Cattel 

17 Using data flow algebra to analyse the alternating 
bit protocol 195 
A.J. CowlingandM.C. Nike 

18 A hierarchical classification of overheads in parallel programs 208 
J. M. Bull 

19 Periodicity in an asynchronous algorithm for parallel 
processing 220 
L.R. Fletcher and M. Santini 

20 Performance indices to characterise concurrent applications: 
experimenting GSPN evaluation techniques in plant automation 232 
0. Botti and L. Capra 

21 Reverse profiling 244 
F.W. Howell 

Part Two Project Reviews 

22 SEMPA: software engineering methods for parallel scientific 
applications 259 
P. Luksch, U. Maier, S. Rathmayer and M. Weidmann 



www.manaraa.com

Contents vii 

23 EPOCA: status and prospects 265 
S. Donatelli, N. Mazzocca and S. Russo 

24 The PARSE project 271 
I.E. Jelly and I. Gorton 

25 The AL++ Project: object-oriented parallel programming on 
multicomputers 277 
M. Di Santo, F. Frattolillo, :W. Russo and E. Zimeo 

26 The Basel Tool Suite for parallel processing 283 
H. Burkhart, N. Fang, R. Frank, G. Hiiclzler, :W. Kuhn and G. Pretot 

Part Three Demonstrations 

27 Development framework for real-time control system design 291 
J.M. Bass, A.R. Browne, M.S. Hajji, P.R. Croll and P.J. Fleming 

28 A knowledge based approach to parallel software engineering 297 
P. Milligan, P.P. Sage, P.J.P. McMullan and P.H. Co" 

29 Problem-solving on scalable parallel systems using 
application specification and reusable software components 303 
KM.Decker, J.J. Dvorak and R.M. Rehmann 

30 The PS project: development of a simulator of PVM applications 
for heterogeneous and network computing 310 
P. Aversa, A. Mazzeo, N. Mazzocca and U. Villano 

31 Supporting integrated modelling of parallel hybrid systems 316 
C.l. Birkinshaw and P.R. Croll 

Index of contributors 323 

Keyword index 324 



www.manaraa.com

PREFACE 

In March 1996, the First IFIP Workshop on Software Engineering for Parallel and Distributed 
Systems was held in Berlin, Germany. The workshop was co-sponsored by the German Computer 
Society GI (Gesellschaft fur Informatik), and organised in association with the International 
Software Engineering Conference (ICSE 18). This publication is based on the proceedings of the 
workshop. 

The aim of the workshop was to provide a forum for exchange of information and publication of 
the latest technological and theoretical advances in software engineering for parallel and distributed 
systems. Our previous experience of running short workshops on this topic in Aachen, Germany 
(1993), Como, Italy (1994) and Hawaii, USA (1995) had indicated that there was a growing need 
for this specialised event. The International Programme Committee was formed from a group of 
experts in different countries and application areas, all of whom were enthusiastic to explore and 
publicise contemporary research in parallel and distributed software engineering. 

Many software applications require the use of explicit parallel programming techniques in order to 
meet their specification. Parallelism is needed to exploit the processing power of multi-processor 
systems in order to achieve high performance, to provide fault-tolerance and reliability in safety
critical and real-time systems, and to deal with physically distributed computing resources. While 
the range of existing software and hardware technology that can be employed in parallel and 
distributed systems development is massive, a set of underlying problems concerned solely with the 
use of parallelism can be identified. 

These include: 
• identification of problem-domain and solution-domain parallelism 
• incorporation of concurrent activities in specification and design 
• architectural influences on design and implementation, including use of virtual machines 
• correctness and testing of systems 
• performance prediction, monitoring and evaluation of systems 
• systems heterogeneity 

Importantly, software engineers must deal with these issues in addition to tackling the more 
conunonly identified problems which occur in all software projects. Within a number of different 
application areas, issues regarding the integration of good software engineering practice into the 
production process are increasing seen as highly relevant. These include science and engineering 
applications, real time control and distributed systems. Thus the emerging community of 
researchers involved in parallel software engineering is concerned with the impact that the specific 
requirement to handle concurrency has on the software development process. Topics for 
investigation include the requirements analysis and specification, design, implementation and 
verification of parallel and distributed software. 

Over sixty papers were submitted to the workshop. Of these, twenty one were accepted as full 
technical papers, and presented at the workshop. All papers were fully reviewed, and we are very 
grateful to all the referees for their careful and knowledgeable evaluation of each paper. 



www.manaraa.com

X Preface 

Contributions based on the application of new techniques to real software systems were 
encouraged as well as those describing advances in theory or methods. 

As well as technical paper presentations, two special review sessions were included in the 
workshop. The first of these involved demonstrations of a number of software support tools: these 
were documented as short papers and included within these proceedings. In order to encourage 
dissemination of infonnation on current collaborative projects, five project review papers were 
provided. 

The papers cover a wide range of topics, and represent some of the most recent work in the area of 
parallel and distributed software development. New methods, tools and theories are described and 
offer solutions for some of the problems identified above. Together they constitute a view on the
state-of-the-art in parallel and distributed software engineering. Several papers address high level 
design approaches for parallel and distributed software. Themes emerging from these include the 
necessity to model communications, the use of object based methods and the role of CASE 
technology. At the implementation stage, work on automatic parallelisation is reported in two 
papers, and issues of configuration and scheduling are also explored. The verification of parallel 
and distributed software fonns the topic of three papers: these explore tool support for early 
verification and testing, and, more formally, the role of temporal logic in model checking. Within 
the fonnal modelling area, papers describe new theoretical work as well as the application of 
techniques to different systems, and the role of process algebras is clearly demonstrated in these. 
Perfonnance prediction and analysis is of crucial concern within many parallel and distributed 
software projects. Four papers present new work on the classification of perfonnance issues, 
perfonnance modelling techniques and analysis of algorithms. 

For the future, we believe that this book has highlighted a number of issues. There is a need for 
rigorous design methods which encompass the range of abstractions required to specify and 
implement concurrent software. The parallel and distributed software community has recognised 
that good tool support is an essential a~pect of the engineering process but there ha~ been 
insufficient emphasis on inter-operability between different tools. Better integration of tools and 
techniques would offer practitioners a more robust approach to software development. 
Perfonnance is a key issue for the majority of parallel and distributed systems, and further work on 
temporal representations is thus required to support formal specification and analysis. Also, within 
the fonnal modelling area, greater emphasis should be given to increasing the accessibility of 
existing techniques to allow software developers to use these in a coherent manner. This will 
involve both the provision of automated support and better levels of abstraction in modelling 
methods. 

We would like to thank all members of the International Programme Committee not only for their 
work in organising the review process but for all the helpful and good humoured contributions 
towards the setting up of the workshop. Thanks are also due to the organisers of ICSE-18 for their 
support for the workshop, including provision of administrative and registration facilities. 

Innes Jelly 
(Programme Chair) 

i.je/ly@ shu.ac. uk 

Ian Gorton 
(Co-Chair) 

iango@syd.dit.csiro.au 

Peter Croll 
(Co-Editor) 

p.croll@dcs.shefac:.uk 



www.manaraa.com

Preface xi 

PROGRAMME COMMITTEE 

Innes Jelly (UK) Chair 

Ian Gorton (Australia) Co-chair 

Arndt Bode (Germany) 

Manfred Broy (Germany) 

Helmar Burkhart (Switzerland) 

Peter Croll (UK) 

Ian Foster (USA) 

Juergen Ebert (Germany) 

Cherri Pancake (USA) 

Brigitte Plateau (France) 

John Potter (Australia) 

Stefano Russo (Italy) 

Naoshi Uchihira (Japan) 



www.manaraa.com

PART ONE 

Research Papers 



www.manaraa.com

1 

Infrastructural Software for Model Driven 
Distributed Manufacturing Systems 

Ian Coutts, Marcos Aguiar and John Edwards 
Loughborough University of Technology 
Manufacturing Systems Integration Research Institute 
Loughborough, Leicestershire LEI I 3TU - England. 
Tel. +44 I 509 228250, Fax +44 I 509 267725 
Emaill.A.Coutts@lut.ac.uk, WWW http://msiri.lut.ac.uk 

Abstract 
The modelling of manufacturing systems has become a necessary part of the drive for 
manufacturing enterprises to remain competitive within a global marketplace. Manufacturing 
models are increasingly being used not just as a means of articulating system design but also to 
drive manufacturing systems at run time. To achieve model execution within a distributed and 
integrated manufacturing system a number of infrastructural software elements are required. 

1 INTRODUCTION 

When preparing a paper for this workshop the authors attemped to contribute 'something from 
the real world'. The following section is a description of a typical industrial problem domain, 
for which researchers in the application of IT to manufacturing, are deriving solutions in the 
form of methodologies, software tools and supporting models. This description provides a 
context against which the CASE tool and infrastructural software described in the paper can be 
considered. 

2 A TYPICAL INDUSTRIAL PROBLEM DOMAIN 

In the electronics manufacturing industry the design of fine line printed circuit boards (PCB) 
implementing highspeed logic designs is a complex problem involving groups of personnel 
with a variety of skills (Berri, 1994). The process involves the generation of PCB layout 
designs, their simulation and analysis, followed by inevitable redesign, in an iterative cycle. 



www.manaraa.com

4 Part One Research Papers 

This environment of continual evolution requires the discipline of identifying and controlling 
design versions, in order to maintain integrity and traceability. Figure 1 describes a scenario 

Figure 1. An Industrial Application Scenario 

where personnel involved with engineering data management (EDM) must combine with those 
involved in the design and analysis processes using software applications from a range of 
vendors. 

Required change to a PCB design could be initiated from an external request for a new 
variant of an existing product. A change control application driven by an engineering 
department operator could initiate a PCB layout change following completion of the electronic 
logic design. Following modification to the PCB layout, the company analysis expert will use a 
range of simulation applications to check for problems such as ringing, crosstalk and EMC 
(Berri, 1994). Throughout this process file access is controlled by another EDM application, 
while global infonnation access is enabled through the use of an infonnation view provision 
application (Weston, 1994). Following successful completion of the new PCB layout the 
design will be approved and released for prototype production by a senior member of the 
Engineering Department. 

In order to provide a flexible integrated manufacturing software system to support this type 
of operation there is a requirement to model and rapid prototype a system based on a 
coordinated set of distributed software objects, where these objects interoperate through 
message passing. This fonnal approach to manufacturing system creation is part of a process 
often described as manufacturing enterprise engineering. 

3 AN OBJECT-BASED BOTTOM UP MODELLING TOOL 

The Bottom Up tool is intended to be used to model systems by combining manufacturing 
resources, while separating system behaviour from system function. Behaviour is captured 
using petri-net models and is executed at runtime, this behaviour is distributed as it is 



www.manaraa.com

Infrastructural software for distributed manufacturing systems 5 

described within the component objects of a system. 
Figure 2 outlines the structure of the object-based CASE tool which was built using IPSYS 

-~ 
scenario_~,gniD scenario diagram -- ...,._ _ __. ____ _._·~-...... 

··-... 

object behaviour diagram 

Figure 2. Object-based bottom up modelling tool 

Meta CASE technology (Alderson 1991), the figure also shows the main elements of code that 
the tool can generate. Two aspects are of particular importance in this figure, namely: the 
design process embodied in the diagrams that the CASE tool supports, and; a capability for 
generating a rapid-prototype of a particular design which can be executed upon a layer of 
software which forms an integration infrastructure. 

The modelling method encapsulated by the CASE tool comprises three diagramming 
techniques namely: a scenario diagram (which identifies the major objects (i.e. Active 
Resource Components* - ARC) which constitute the main components of a system being 
modelled, and defines the flow of messages among these objects), an object behaviour diagram 
(which defines the expected external behaviour of an object as perceived by the objects with 
which it interacts. Such a description utilises a predicate-action Petri-net (David, 1994) to 
define the internal sequence of actions within the object, as well as the relationships between 
such actions and external interactions with other objects to which the object in question 
relates) and a Configuration diagram. (which defines the computer configuration of the system 

*. An active resowce compooent identifies a component of a sysrem which is able to execute an element of 
functionality on its own. It can also be a modelling description which characterises eitber a human being. an 
application program or a macbiDe that possess a computerised controUer. In the case of this paper. particular 
interest is placed upon active resource components which characterise software objects. The term Active 
Resowce C<mpooent is defined within the CIM-OSA Reference Architecture (ESPRIT/AMICE. 1993) 



www.manaraa.com

6 Part One Research Papers 

i.e. on which host computer each active resource component will be executed). 
These three diagrams constitute a minimal modelling facility for describing a system 

comprised of a nwnber of objects which interact with one another in order to perform a 
common task. Such a description focuses on capturing the behavioural aspects associated with 
the way in which interactions occur within the system. The actual functionality performed by 
each object is defined in close association with the predicate-action Petri-net which defines its 
internal behaviour. This functionality comprises a set of object methods or object member 
functions which within this paper will be referred to as methods. 

4 MODEL CREATION 

As stated earlier, in order to engineer an agile • and integrated, distributed manufacturing 
software system there is a requirement to model and rapid prototype a system based on a 
coordinated set of distributed software objects, where these objects interoperate through 
message passing. The methodology embodied in the bottom up CASE tool can provide support 
for this process. The level of support can be illustrated by examining a general scenario. 
Figure 3 shows a representation of such a system, modelled via an object-oriented 

Figure 3. Scenario diagram of a hypothetical system 

representation, where four objects are required to coordinate in order to support a distributed 
manufacturing process. 

The objects depicted in Figure 3 perform tasks defined by their internal functionality where 
these are triggered by messages. This is described by the behaviour diagrams populated with 
the predicate-action Petri-net models as shown in Figure 4, this functionality may, of course, 
involve the actions of a human operator using the software object. Figure 4 also illustrates a 
proposed notation that explicitly classifies the type of action associated with the firing of each 
transition. 

•. An agile manufacturillg system embodies a bi&h degree « Joaa 1enn llexibility. This provides support for 
system update and chaDge which eaables tbe manufacturiDg enterprise 10 n:spood quickly 10 cluulgiDg market 
situatioos. 



www.manaraa.com

Jnfrastructural software for distributed manufacturing syst~ms 

Object 1 

I 'lm2.2, &m2.2 

I !m32.a. !m32.b 
Object] 

Legend: 
?m: receipt m a message 
!m: sending of a message 
&m: execution of a method 

.2.b. &m32.b 

i?m42.a, &m4.2a 

Object4 

Figure 4. Petri-Net descriptions of the components of the original system 

5 CODE GENERATION FOR RAPID-PROTOTYPING 

7 

Design information formalised through models produced using the CASE tool are passed in 
the form of a number of pieces of interpreted code to the infrastructural software that enables 
model enactment. 

This paper now focuses on describing the infrastructural software elements which enable 
the models produced during system design to be executed during rapid prototyping. 

6 MODEL EXECUTION 

To facilitate the rapid prototyping of system solutions generated by the CASE tool. researchers 
at the MSI Research Institute have produced an environment which comprises a set of 
infrastructural software elements that sit above generally available operating system software. 
The principal components forming this environment are shown in Figure 5. The figure shows a 
number of objects interacting via an integration infrastructure, these objects are executable 
representations of the objects modelled within the scenario diagram of the CASE tool. Each 
object comprises four distinct areas of functionality as shown in the 'exploded' object in 
Figure 5, and as described in the following points: 



www.manaraa.com

8 

Methods/FUDCUOIIS 
(intemal functionality) 

Means of Model Execution 

Behavioural Model 

\ ,, 
\ Jf 

\ 

' ' rl \ \ tl 
\ .----....,1 

\ 
\ 

Part One Research Papers 

Scenario 
Diagram 

Object ~ Behaviour am 
Diagram 

Used 10 geoerate 
model of 

interaction 

OBJECT-BASED MODEI.llNG TOOL 

Behavioural 
Models 

Geoeraled by 
CASE Tool 

Executable 
Objects 

\ INIF.G~~ ~fmuCffiE) 
Provides 

inlel!l"ation 
services 

Objecl/nleraclions 

Figure 5. Composition of Executable Objects 

• an integration infrastructure interface which enables the object to access the integration 
services offered by an integration infrastructure. 

• a behavioural model which describes the interactions between any one object and all other 
objects in the system. This is defined within the Object Behaviour Diagram of the CASE tool 
during the system design phase as a predicate-action Petri-net. 

• a number of methods which comprise the internal functionality of an object. 
• the means to execute both the object's behavioural model and trigger its internal methods. 

The following sections focus on the structure of the objects identified in Figure 5 and the 
infrastructural software elements used to execute such objects. In order to describe these 
objects it is first necessary to briefly describe the integration infrastructure on which they 
interact (a detailed treatment of which is given in (Coutts, 1992)) and to describe the format of 
the behavioural models which are automatically generated by the CASE tool. 

7 THE INTEGRATION INFRASTRUCTURE 

An integration infrastructure provides the necessary services to enable interaction between the 
various software objects which comprise a system. It provides a consistent set of services 



www.manaraa.com

Infrastructural software for distributed manufacturing systems 9 

irrespective of the objects's physical location, or the operating system and network protocols 
used. Researchers at MSI have created such an integration infrastructure called CIM-BIOSYS 
(CIM Building Integrated Open SYStems). The objects achieve interaction by using the 
integration services offered by the infrastructure. As well as object interaction (message 
passing), CIM-BIOSYS provides services for file access, data access and system configuration. 
Services pertinent to this paper include; EST _APP which establishes a peer to peer link 
between two software applications, TERM_APP which terminates a peer to peer link, 
STAT_APP, which obtains the status of peer to peer links, SEND_APP which sends untyped 
data to a connected peer. 

The system configuration is produced by the CASE tool via the configuration diagram (see 
Figure 2). This details configuration infonnation such as which objects reside on which 
platform, which executable image to invoke for a particular object and which network driver to 
use to communicate with a particular host. This information is held in a number of ASCII files 
(produced directly by the CASE tool) which are loaded when the infrastructure is initialised. 

8 mE FORM OF THE OBJECT BEHAVIOURAL MODELS 

The link between system design (or model building), and model execution is provided by the 
production of an executable version of the behavioural model created for each object described 
using the object behaviour diagrams within the CASE tool (as shown in Figure 5). Object 
behavioural models are represented by predicate-action Petri-nets during the system design 
phase within the CASE tool and are converted into a textual language (defined by researchers 
at MSI) during rapid prototyping. It is this textual language which can be enacted to facilitate 
model execution. 

The textual language known as BTL (Behavioural Transition Language) defines predicates 
to describe interaction with other objects and predicates to execute internal methods. An 
example textual model for the predicate-action Petri-net Object2 defined in Figure 4 is shown 
in Figure 6. The language also provides for the representation of global variables which are 

variable(de,2). 
transition( init1 , ( icle > 0 & recv_objec:t(object1 ,"m2.1•)) , 

( method(2.1) @ p1 is p1 + 1 @ idle is idle - 1 )). 
transition( inil2, ( icle > 0 & recv_objec:t(object3,"m3.2b")), 

( method(3.2) @ p3 is p3 + 1 @ idle is idle - 1 ) ). 
transition( init3, (idle> 0 & recv_objecl(object4,"rn4.2a")), 

( method(4.2) @ p3 is p3 + 1 @ idle is idle - 1 ) ). 
transition( p1-2, ( p1 >- 1) • ( send_object(object4,"m3.1 ")@ p2 is p2 + 1 @ p1 is p1 - 1 ) ). 
transition( p2-3, ( p2 >-1& recv_object(object4,"m4.1")), 

( method(4.1)@ p3 is p3 + 1@ p2 is p2 -1 )). 
transition( p3-icle, (p3 >- 2 ), (send_ object( external, "m5.1 ") @ p3 is p3 - 2 @ idle is idle+ 2 ) ). 

Figure 6. BTL Model for Petri-Net description of Object 2 

used for token counts, arithmetic expressions etc. The following provides some examples of 
such predicates: 

method(2.1) - this executes the method called 'method 2.1'. 
send_objecl(external,"m5.1")- this sends the message "m5.1" to the object called 'external'. 
recv_object(object4,"m4.2a")- this tests to see if message 'm4.2a' has been received from the 

object called 'object4'. 



www.manaraa.com

10 Part One Research Papers 

p2 - 1 - this tests to see if the variable p2 is less than or equal to 1. 
p3 is "hello"- this sets the value of p3 to 'hello'. 

A behavioural model expressed using BTL consists of a list of transition descriptions 
comprising a label, a condition and an action, which take the following form: 

transition(label, oondilion, action). 
The label is used to identify a particular transition, but serves no function within a BTL 

model. H the condition is satisfied the associated action is fired, composite conditions using the 
operator'&' to denote the AND operation can be used and a list of separate actions can be 
fired. Every action within the list is executed irrespective of the success or failure of the 
previous action, here the operator'@' is used to denote this 'follow on' operation. A list of 
variable initialisations can also be included. H variables are not initialised they are instantiated 
when they are first encountered and given a value of zero. As an example the following 
transition 

transition(inil2, (idle > 0 & recv_object(object4,"m4.2a-)), 
(melhod(3.2)@ p3 is p3 + 1 @ idle is idle - 1 )). 

is labelled 'init2', and will execute method '3.2', add one to variable 'p3' and subtract one 
from variable 'idle', if 'idle' is greater than zero and the message 'm4.2a' has been received 
from object 'object4'. 

9 THE STRUCTURE OF THE EXECUTABLE OBJECTS 

Figure 7 provides a more detailed breakdown of the functionality within the four principal 
elements of an executable object. The figure also shows the important relationships between 
these functional elements. The principal contribution made while researching the requirements 
for the infrastructural software elements needed to support the bottom up model driven 
approach are highlighted in the two shaded areas on Figure 7: namely the 'model execution 
engine' constructed using Prolog• (Clocksin, 1984) and the 'event driven integration 
infrastructure interface' constructed using 'C' (Kernighan 1978). These two areas of 
functionality are described in the following sections, but for completeness and to establish the 
role of each component, the sections below describe each of the four areas from top to bottom 
as shown in Figure 7. 

9.1 The methods which implement the internal functionality of the object 

As introduced earlier in the paper these are well defined and bounded pieces of functionality 
which perform the operations required for the object to fulfil its purpose. Such methods are 
identified by the modelling process and the 'trigger points' for their execution are contained 
within the object behavioural model generated by the CASE tool. As shown in Figure 7the 
methods are invoked by requests made by the execution engine. The code required to perform 
these methods is not automatically generated by the CASE tool and must be included by the 
system implementor. Within the current implementation such functionality can be included as 
Prolog source code or compiled 'C' object modules. Using the example outlined at the 

•. 1be Prolog selected to implement die executable object was 'C Prolog' (as defined by Femaodo Pereira. July 
1982, F.dCAAD, Dept. m Architectwe, Uuiversity ol Edinbuqb) this was chosen as it allows exleDsioo to both its 
Prolog enviromnent and tbe 'C' sowce code in which it is writteD. 



www.manaraa.com

Infrastructural software for distributed manufacturing systems 11 

Figure 7. Structure of Executable Object 
beginning of this paper, if an object constituted the change control part of a EDM system a 
internal object method might time-stamp a particular design. 

9.2 A behavioural model execution engine. 

Executable objects are invoked via the CIM-BIOSYS EST_APP integration seJVice, the name 
of the file containing the BTL version of the appropriate object behavioural model is supplied 
at this time. The model import and initialisation process then loads the BTL model from the 
host computer's file system into the object's internal database. If required peer connections are 
then established and the transition test and fire process is started. This process continually tests 
the conditional part of all the transitions contained within the BTL model. If the result of a 
condition evaluation is true the corresponding action or actions are fired. The subsequent 
execution of predicates contained within the transition descriptions causes the executable 



www.manaraa.com

12 Part One Research Papers 

object to either: manipulate internal variables e.g token counts within the behavioural model, 
execute internal functionality via the predefined methods or interact with its external 
environment through message passing via the use of integration services provided by the 
integration infrastructure (CIM-BIOSYS). 

As shown in Figure 7 the model execution engine contains the two processes (model 
initialisation and transition test and fire) explained above and the following four separate 
functional support modules. 

Model syntax interpreter 
This provides both access and parsing of the B1L model held within the Prolog database. The 
transition test and firing process uses this functional support to examine the transitions held 
within the B1L model. This functionality has been mainly achieved via extensions to the 
resident Prolog parser. 

Interaction management 
This provides access to the integration service requests, responses and commands held within 
the Prolog database. The transition test and firing process can use this functional support 
module to issue integration service requests to the database, these will then be sent to the 
infrastructure by the integration infrastructure interface. The opposite is true for incoming 
messages, they appear via the integration services from the integration infrastructure into the 
database and then onto the execution engine. 

Variable manipulation 
This provides access to and manipulation of the global variables defined within B1L. These 
variables are manipulated by operators defined by the Prolog language. However the scope of 
the variables does differ from those defined by the Prolog language, as once they are initialised 
they can be shared and manipulated by all predicates and transitions until they are explicitly 
removed i.e they are global in nature. 

Method execution 
This enables the transition test and firing process to invoke the predefined internal object 
methods associated with the underlying function of the object. 

9.3 A Database. 

This serves the executable object as a data repository which holds: a) the B1L model loaded 
from the external file system; b) any associated variables required to execute the B1L model 
and; c) integration service requests or responses generated by the model execution engine or 
the integration infrastructure interface. The database also serves as an interface between the 
model execution engine and the integration infrastructure interface as both components are 
driven by the integration service requests held within the database. 

9.4 An Integration Infrastructure Interface. 

This is an event driven interface which provides the functionality required to allow the 
executable object to access the integration services offered by CIM-BIOSYS. This interface 



www.manaraa.com

Infrastructural software for distributed manufacturing systems 13 

also makes the executable object appear as a CIM-BIOSYS compliant application by 
communicating with CIM-BIOSYS using the required protocol and inter-process 
communication mechanisms. The interface has been constructed to respond to two different 
types of event. One event type is the arrival of a data packet from CIM-BIOSYS, typically this 
could be an incoming integration service command or a response to a service command 
initiated by the executable object. In both cases the corresponding request is constructed and 
instantiated in the database. Another example is the arrival of a low level "heartbeat" to check 
the object is still operating as expected in which case an appropriate reply is issued. The other 
event type is the instantiation of an integration service request within the database in this case 
the corresponding integration request is constructed and delivered to CIM-BIOSYS and the 
request removed from the database. 

As shown in Figure 7 the integration infrastructure interface contains the following three 
separate functional support modules. 

Data Structure Mapping 
This maps between the fomt of the structured data packets required by CIM-BIOSYS 
integration services and that defined in 811... It also provides the mechanism by which 
asynchronous access to the database is enabled. This insures incoming integration service 
requests are processed concurrently with the transition testing and firing process. 

liS Interface Management 
This manages the necessary interaction with CIM-BIOSYS through achieving the following: 
executing object initialisation sequences; by performing any handshaking required during 
normal operation; by executing the object termination sequence; by the handling of status 
requests from other applications, and; by the routing of integration service requests between 
the internal database and CIM-BIOSYS. 

/PC Management 
This is a facility which uses UNIX Inter-Process Communications to facilitate the exchange of 
structured data packets between the executable object and CIM-BIOSYS. 

The executable objects described within this section provide a means for the execution of 
behavioural models generated by the CASE tool. Additionally they provide an environment in 
which a number of implementation features of the whole model execution process can be 
tested and enhanced. The model execution engine can be readily modified to accommodate 
changes in behavioural model syntax, behavioural model functionality and integration services 
used. This flexibility is principally due to the engines construction being based on the Prolog 
programming language. However, flexibility does not compromise runtime performance or 
ability to function in a distributed environment due to the event driven integration 
infrastructure interface being implemented using the 'C' programming language. 

10 CONCLUSIONS 

This paper has introduced a CASE tool for the design, implementation and execution of 
integrated manufacturing systems. The paper has focused on a description of the infrastructural 



www.manaraa.com

14 Part One Research Papers 

support software which provides enactment facilities for the behavioural models created by the 
CASE tool. The distributed systems created using the tool and its infrastructural support 
elements benefit from a model driven approach which provides support for the key 
manufacturing enterprise need of accurate implementation of user needs and an improved 
ability to respond to required change. 

The CASE tool and the infrastructural software described provide the support which brings 
together conventionally separate life cycle phases, from 'detailed design' to the 'configuration 
and execution' of systems upon an industrially tested integration infrastructure. 

11 REFERENCES 

Alderson A. (1991) Meta-CASE Technology. Lecture Notes in Comp. Science Software Dev. 
Env. and CASE Technology. Proc. of Euro. Symp. p81-91. Springer-Verlag. Germany. 

Berri, J. (1994) High Speed Heaven, Printed Circuit Design. 
Clocksin W.F. and Mellish C.S. (1984) Programming in Prolog, 2ed., Springer-Verlag. 
Coutts, I. A. et al. (1992). Open Applications within Soft Integrated Manufacturing Systems, 

Proc. of Int. Conf. on Manufacturing Automation, Hong Kong, ICMA 92. 
David, R. And Alia, H. (1994) Petri-nets for modelling of dynamic systems - a survey. 

Automatica, vol. 30, no. 2, pp. 175-202. 
ESPRIT/AMICE. (1993) CIM-OSA Architecture Description, AD 1.0. 2. 
Kernighan B.W, Ritchie D.M. (1978) The C programming Language, Prentice-Hall. 
Weston RH, Clements P, Murgatroyd IS. (1994) Information modelling methods and tools for 

manufacturing systems, Proc. Lean/Agile Manufacturing in the Automotive Industries 
Conf. of the 27th Int. Symposium on Advanced Transportation Applications (ISATA), 
Aachen, Germany, pp227-234, ISBN o947719 709. 

12 BIOGRAPHY 

I A Coutts spent two years at Marconi Research as a research scientist, working on industrial 
assembly automation and robotics projects. He has spent the last seven years as a member of 
the Loughborough University Systems Integration Group, and currently works in the MSI 
Research Institute at Loughborough. Particular responsibilities include work on infrastructural 
software and facilities for enabling model enactment. 
M W Aguiar spent seven years as managing director in charge of the Integrated Automation 
Division of a Research and Development Institute of the Federal University of Santa Caterina/ 
Brazil. He has spent the last three years as a member of the MSI Research Institute, involved in 
the 'Model-Driven CIM' project, with particular responsibility for the conception, realisation, 
application and evaluation of SEW-OSA. 
J M Edwards gained his Ph.D from Loughborough University in 1994. Having spent 13 years 
in UK process and manufacturing industry, being involved in the creation of computer control 
and information systems, he joined Loughborough University in 1987. During his 8 years at 
Loughborough he has been involved with the Systems Integration Group and is now a member 
of the MSI Research Institute where his role is as principal investigator on a number of UK 
government funded research initiatives. 



www.manaraa.com

2 
Methodology and Tools for the 
Development of High Performance 
Parallel Systems with SDL/MSCs 

Andreas Mitschele-Thiel 
Friedrich-Alexander-Universitiit Erlangen-Niimberg 
Lehrstuhl fiir lnformatik VII, Martensstrafle 3, 91058 Erlangen, Germany, 
email:mitsch@informatik.uni-erlangen.de 

Abstract 
The Specification and Description Language SDL and Message Sequence Charts (MSCs) are 
widely used in the telecommunication industry to support the software development process. 
In the paper, a methodology and a set of tools are described for the development of high perfor
mance parallel systems in the context of SDL and MSCs. While SDL and MSCs only support the 
formal specification of functional aspects of the system, we propose ( 1) the extension of MSCs 
to include non-functional requirements as the performance requirements of the application and 
(2) the annotation of SDL specifications with the respective execution cost on the parallel sys
tem. The formalization of non-functional aspects yields a set of benefits for system development: 
it allows the full integration of performance issues in all phases of the design process, starting 
from the requirements specification down to the final parallel implementation. It supports the au
tomatization of performance related design decisions and allows the use of sophisticated tools 
supporting the performance optimization process. 

Keywords 
Parallel systems, software engineering, SDL, MSC, performance optimization, tools 

1 INTRODUCTION 

Parallel and distributed systems are inherently more complex than sequential systems. This is 
mainly due to the asynchronous execution of interrelated activities on different hardware units. 
In addition, the lack of a central control makes programming, debugging and testing of such 
systems extremely cumbersome. In order to lift these low-level activities to a more abstract phase 
of the software engineering process, the Specification and Description Language SDL has been 
introduced. SDL allows for taking corrective actions at a higher level of abstraction. This in turn 
reduces the cost of corrections by the order of magnitudes. 

SDL has been standardized by ITU (ITU, 1993). In conjunction with tools, SDL is used by the 
majority of the companies in the telecommunication industry, mainly to design communication 



www.manaraa.com

16 Part One Research Papers 

protocols and distributed applications. In addition, it is employed for the design of real-time and 
safety critical systems. 

The latest version of SDL, SDL'92, with it's support for object orientation, supports the soft
ware engineering process from object -oriented design down to the generation of executable code. 
In conjunction with Message Sequence Charts (MSCs) (ITU, 1993b), system simulation and 
testing is supported, too. Besides a number of proprietary tools and tools from academia, there 
are two main providers of commercial tools for SDL, namely Telelogic with SDT (Telelogic, 
1995) and Verilog with GEODE (Verilog, 1994). The tools support formal specification, valida
tion, simulation, code generation and testing. While the tools for specification, validation, simu
lation and testing are widely used, the generation of the implementation is often done manually. 
This is due to the inefficiency of the code generated by the tools. In addition, implementations 
generated by the tools typically consume considerably more memory. In contrary, the manual 
implementation of SDL specifications contradicts the intended purpose of SDL and forces in
tensive testing of the application at the implementation level in order to ensure consistency with 
the specification. 

A related problem is the lack of a formal approach in the system development cycle that sup
ports non-functional requirements, e.g. performance or fault-tolerance requirements. This be
comes even more obvious when an SDL specification is implemented on parallel systems due to 
the wide variety of design decisions that have to be met. These design decisions include (but are 
not limited to) the architecture of the parallel system, the distribution of code and data as well 
as the strategies employed for scheduling and dynamic load balancing. 

In the paper a methodology is presented for the development of high-performance parallel sys
tems with SDL and MSCs. The approach fully integrates performance issues in the system devel
opment cycle. The topic is highly relevant since it allows the fast development and modification 
of parallel systems in the scope of SDL which provide the required performance. Especially in 
telecommunications, a highly competitive market, the time to market has become the major issue 
to ensure competitiveness. 

The paper is organized as follows. In section 2, an introduction to SDL and MSCs is given. In 
addition, the performance relevant issues with the engineering of parallel systems in the context 
of SDL are discussed. Our methodology for performance relevant development of parallel SDL 
systems is described in section 3. In section 4, the DO-IT toolbox supporting our methodology 
is described. Section 5 summarizes the paper. 

2 ENGINEERING HIGH PERFORMANCE PARALLEL SYSTEMS WITH 
SDLANDMSC 

2.1 Introduction to SDL and MSC 

SDL specifications are fully hierarchically structured as a tree. The root of the tree refers to the 
SDL system specification which typically consists of a set of blocks. Blocks themselves can be 
refined by other blocks or by SDL processes. However, each leaf of the tree has to be an SDL 
process. The communication structure between SDL processes is static. Thus, all potential com
munication channels have to be given in the SDL specification. 

SDL processes communicate asynchronously by exchanging signals. For each SDL process, 



www.manaraa.com

The development of high performance parallel systems with SDL/ MSC 17 

mscexample 

I A I I B I 

state AI) <.state Bl) 

msgl 
msg2 

msg3 

<.state A2 <.state B2) 

Figure 1 An example of an MSC 

several process instances may exist which can either be static or created dynamically by other 
SDL processes during runtime. Each process instance owns a FIFO input queue. 

Each SDL process represents an extended finite state machine (EFSM). For each state of the 
EFSM a set of trigger conditions is specified, typically the reception of a signal. If a trigger con
dition holds, a set of actions is performed, typically including the (asynchronous) sending of 
signals to other SDL processes. As a result of the actions, a subsequent state is entered. 

SDL comes in two syntactic forms, the textual representation SDUPR (SDL Phrase Represen
tation) and the graphical representation SDUGR. A detailed introduction to SDL can be found 
in (Braek and Haugen, 1993) and (Olsen eta!, 1994). 

In the development cycle, SDL is employed for the functional design of the system. The SDL 
specification focuses on the structural aspects of the application under development and the dy
namic behavior of each of its processes. 

In order to complement the SDL specification, MSCs have been proposed. MSCs represent a 
more abstract view on the system. An MSC describes the dynamic behavior of the system, i.e. 
one example (or instance) of a possible execution of the system. Thus, an MSC typically specifies 
how a message is passed through the entities of the SDL system, i.e. its blocks or processes. As 
a result, an MSC defines a partial order on the execution of the SDL system. 

An example of an MSC, passing messages between the two processes A and B and the en
vironment is given in figure I. The MSC specifies the names of the messages passed and the 
states of the two processes before and after the transaction. MSCs are typically created during 
the requirements analysis, i.e. before the SDL specification. MSCs are mainly used to 

• formally specify the functional requirements, 
• serve as a basis for the generation of SDL skeletons and 
• serve as a basis for testing. 

A detailed introduction to MSCs can be found in (Olsen eta!, 1994) and (ITU, 1993b). 



www.manaraa.com

18 Part One Research Papers 

2.2 Design Decisions in the Context of the Design Process 

During the design phase, a high-level SOL specification is derived from the given MSCs. Then, 
the high-level SOL specification and the MSCs are subsequently refined to form the functional 
design specification. The check of consistency of the SOL specification with the MSCs is sup
ported by tools. For the functional design also non-functional requirements need to be consid
ered, e.g. to meet performance or safety requirements. 

Designing parallel SOL systems, as well as parallel systems in general, numerous design de
cisions need to be made and appropriate alternatives chosen. In the following, we describe the 
decisions most relevant to the performance of the parallel SOL systems. We present the design 
decisions in the order in which they are made in the design process. 

In the SDL specification the following design decisions are made 

• the granularity of the SOL entities, i.e. what kind of functionality is provided by an SOL 
process, block or system, 

• the parallelization technique, e.g. farming, functional decomposition or data decomposition, 
• the dynamic of the system, i.e. the question whether SOL processes are created dynamically 

during runtime upon request or not, 
• the representation and distribution of the data, i.e. whether data are maintained by a single 

central SOL process or distributed over the system and maintained by appropriate coherence 
protocols, and 

• the use of (costly) SOL constructs. 

The code generation is concerned with the physical (static) distribution of the software on 
the hardware. Thus, it determines which function is provided by which hardware unit. Since the 
function mapping may be one-to-many, the actual decision where to execute a specific function 
invocation resulting in a certain load on the hardware unit may be deferred to runtime. 

The mapping of functions to hardware units intrinsicly decides the mapping of data. The reason 
for this is that in SDL, data are always encapsulated in processes. The code generation is also 
concerned with the granularity of the processes managed by the operating system. This has an 
important influence on performance especially if the cost of process management is high. Note 
that the code generation is only concerned with the merge of a set of SOL processes to form a 
single operating system process, and not the reverse problem, i.e. the parallelization of a single 
SOL process. Another decision that influences the code generation is the question whether the 
minimization of the execution time or the minimization of the required memory space of the 
application is the primary goal. 

In addition, the code generation determines how the SOL constructs are mapped on relevant 
service primitives provided by the runtime environment (or the operating system in case no run
time environment is present). Most important is the implementation of communication primi
tives and primitives for the dynamic creation of SOL processes. 

The runtime library provides the runtime environment for the SOL system, supporting the 
SOL constructs. The runtime library is typically provided in part by the SOL tools and has to 
be completed by the user. The part typically provided by the user comprises the implementation 
or mapping of the primitives for interprocessor communication and process creation on the re
spective primitives of the operating system. Here the most appropriate services with respect to 
functionality and performance are to be selected. 



www.manaraa.com

The development of high performance parallel systems with SDL!MSC 19 

'ir-L__ _____ ___, 

-
Figure 2 The development methodology 

In addition, strategies for 

• the dynamic distribution of the load on the processors of the system and 
• the dynamic scheduling of processes 

either have to be implemented in the runtime library or at least the parameters to configure the 
respective services need to be provided. This is the case if the mechanisms for load balancing 
and scheduling as provided by the operating system are employed. 

Decisions related to the operating system are the provided functionality, especially the support 
for parallel processing and communication, and its performance. 

The remaining code provided by the user is mainly concerned with the implementation of ab
stract data types, the handling of exceptions and the handling of communication with the external 
interfaces. 

3 METHODOLOGY FOR SYSTEM DEVELOPMENT 

The major goal of our methodology is the early integration of performance data into the devel
opment process in order to minimize the time and cost for redesign and reimplementation. The 
outline of the methodology is depicted in figure 2. The part of the development cycle our method
ology covers comprises five phases: functional design, analysis, synthesis, implementation and 
validation. Thus, our methodology covers the same part of the development cycle typically sup
ported by SDL and MSCs. 

Starting point of our methodology is the requirements specification. The requirements specifi
cation is subdivided in two parts, the functional and non-functional requirements. The functional 
requirements are formally specified with MSCs. The performance requirements of the system 
under development are also given formally. For this, an extended version of MSCs is employed. 
In addition, the machine architecture should be formally specified or the constraints on the ma
chine architecture. The formal specification of the performance requirements and the machine 
architecture are a prerequisite for the automization of the design process. 



www.manaraa.com

20 Part One Research Papers 

Functional Design During the functional design phase, the functional design specification is de
rived. The functional design is specified in SDL and represents a functional description of the 
system at a detailed level. It is typically derived in a series of steps subsequently moving from 
a top- to a low-level design document. In conjunction with the refinement of the SDL specifica
tion, the MSCs, as given in the requirements specification, are subsequently refined to reflect the 
internal behavior of the refined SDL specification. The functional design specification should be 
checked for consistency with the requirements specification and for completeness before mov
ing to the next phase. For the functional design, first tools are available to derive SDL skeletons 
from MSCs. In addition, the validation of the consistency with the requirements specification 
and the check for reachability and deadlocks is supported by commercial tools. 

The functional design specification typically moves from a rather implementation-independent 
specification to a more implementation-specific specification. However, the initial functional de
sign specification may already contain solution-domain parallelism. This is especially true when 
the need for parallelization is obvious from the requirements specification. For example, if a cen
tralized data base is obviously not able to satisfy the required performance, it does not make 
sense to specify a centralized data base that will later on be replaced by a distributed implemen
tation. The main reason for the straight development of the distributed data base is that a central 
data base, which will definitely be simpler, can in general not be used as a reference model to 
verify the distributed data base. This is because of the state space explosion problems typically 
encountered with the formal verification of extended finite state machines. Thus, the distributed 
data base is typically validated with the MSCs given in the requirements specification or a refine
ment hereof. This eliminates the need and usefulness of the centralized data base specification. 

Analysis The purpose of the analysis phase is to check whether the functional design specifica
tion is sufficient to meet the given performance requirements, and in case this does not hold to 
provide guidelines to the user for a redesign of the functional design specification. The main per
formance criteria to be analyzed are the throughput and the response-time measures of the SDL 
specification. For this, the execution of the SDL specification on the machine(s) as specified in 
the requirements specification, with the load specified by the extended MSCs, is assumed. In or
der to support this, we pursue the extension of the SDL specification with annotations that allow 
for the specification of the execution time of SDL constructs on a set of available machines. In 
other words, each SDL construct is attributed with a vector. Each element of the vector spec
ifies the execution time of the construct on a specific machine. Note that the term "machine" 
refers to an abstract machine, comprising the processor hardware, the runtime environment and 
the operating system. Thus, the execution cost given for an SDL construct is influenced by these 
components as well as the code generator. In case different code generators or operating systems 
are at the disposal of the design process, a separate machine model is employed for each of the 
combinations. 

In order to derive the performance data, two approaches are possible. The cost of the execution 
of the SDL specification, or more specifically the constructs of the SDL specification, may either 
be derived analytically or by means of measurements. 

For the analytic approach, a performance data base is needed that specifies for each SDL con
struct the respective cost to execute the construct on each of the available machines. The advan
tage of the analytic approach is- provided the data base is available- that the data can be derived 
without actually implementing the SDL specification on the target machine. Thus, the analysis 
can be performed much faster than it is possible with the measurement approach. 



www.manaraa.com

The development of high performance parallel systems with SDL!MSC 21 

With the measurement approach, an implementation is generated for each possible target ma
chine. The implementations are executed with the given MSCs. During the execution, the per
formance data, i.e. the execution cost for the relevant SDL constructs are measured. In a further 
step, the cost are integrated in the SDL specification. 

The analysis phase is left after subsequent redesign of the functional design specification has 
lead to an SDL specification which satisfies the basic performance requirements. The main de
sign decisions which are actually met during this redesign cycle deal with the introduction of 
solution-domain parallelism in the functional design specification. In the cycle, the system is 
prepared - but not configured- to meet the given performance requirements. The most impor
tant decisions are concerned with the strategy for the distribution of data, the strategy for the 
static distribution of code and the strategy for the dynamic distribution of the load. In addition, 
also strategies to provide fault tolerance, if required, should be decided on in this phase. The de
sign decisions concerning the parallelization strategies need to be integrated manually into the 
SDL specification. This is because the respective design decisions are mainly concerned with 
questions dealing with algorithmic features of the functional specification. Thus, automatic sup
port on the specification level would require the transformation from one algorithm to another, 
which is undecidable in most cases. 

Synthesis In the synthesis phase, which covers the implementation design, the major optimiza
tion decisions are made. In other words, the alternatives for parallel execution, which have been 
identified in the analysis and the functional redesign phase, are evaluated, the best alternatives 
selected and the missing parameters of the respective strategies optimized. 

For system synthesis, model-based optimization techniques can be used to decide on the selec
tion of design alternatives which have emerged in previous phases. For example, assume in the 
previous redesign cycle a certain SDL process has been parallelized. Then, during implementa
tion design it is decided 

• where the SDL process is executable, i.e. on which processors the respective code is available, 
and 

• under what circumstances a given input is handled by a specific processor of the set of proces
sors that can process the input, i.e. the dynamic load balancing strategy. 

In general, the synthesis decides on 

• the (static) distribution ofthe code, i.e. the distribution of SDL processes, 
• the distribution of data, which again reduces to the distribution of SDL processes due to the 

encapsulation of data in SDL processes, 
• the granularity of the processes handled by the operating system, 
• the dynamic load balancing strategy and 
• the dynamic scheduling strategy. 

The decisions are based on the same basic type of information employed by the analysis phase, 
i.e. the annotated SDL specification, the extended MSCs and additional design constraints. Addi
tional requirements of the requirements specification, which should be considered, are the cost 
for system development and production of the different design alternatives and the respective 
time to market of the design alternatives. In principle, a complex goal function may be employed 
quantifying the corporate goal in respect to the development of the system. As can be easily seen, 



www.manaraa.com

22 Part One Research Papers 

a large number of parameters influence the function. Note that different from the design decisions 
made during previous phases, the decisions made here can be automatically integrated into the 
implementation. 

Implementation The implementation phase is in charge of the generation of the actual paral
lel implementation. The larger part of the code can typically be derived automatically from the 
SDL specification as provided by the functional design specification. This is done according to 
the design decisions specified by the implementation design specification as generated by the 
synthesis phase. 

Commercial SDL tools for code generation are available, which handle the static distribution 
of code and data. Special tools are needed to automatically generate the code which implements 
the dynamic load balancing strategy and the dynamic scheduling strategy. In addition to the au
tomatically derived part of the implementation, a part of the implementation needs to be hand
coded. To generate a prototype implementation, this should be kept as small as possible. 

From the performance viewpoint, only the parts influencing the performance of the system 
should be implemented at this stage. However, additional code may be needed to take into ac
count the non-ideal properties of physical hardware, which is not taken into consideration by 
SDL. Also additional code may be needed to support testing and measurement. 

Validation The implementation serves two purposes, 

• to test and validate the functional behavior of the system and 
• to measure the performance figures of the system and to validate them against the perfor

mance requirements. 

Validation is still needed, but its automization is highly supported by the formal approach. It 
may lead to feedback to various previous phases of the development cycle. Testing the functional 
behavior of the system is an important activity of the development process, and the effort to be 
put into it highly depends on the rigor with which the preceding activities have been performed. 
However, functional testing as an activity in the development process is rather independent from 
the performance issues. For this reason, it is not directly covered here. The reader may refer to 
(Grabowski, 1994) for a detailed discussion of the issue. 

The measurement and validation of the performance of the system is the last phase relevant to 
the performance of the implementation. This is done in a series of steps. First, the implementa
tion is automatically instrumented to allow for the tracing of performance measures. Then, the 
implementation is executed with the load specified in the requirements specification, i.e. the ex
tended MSCs. During the execution, the relevant performance data are traced with a monitoring 
system. The data are analyzed and checked against the performance requirements. In addition, 
measurements can also be used to validate or update the performance data base employed during 
the analysis phase. Instrumentation, monitoring and performance analysis can be supported by 
tools. 

4 THE DO-IT TOOLBOX 

In order to support the automization of the design and implementation process for parallel sys
tems in the context of SDL and MSCs, the DO-IT toolbox (Design and Optimization- lntelli-



www.manaraa.com

The development of high performance parallel systems with SDL!MSC 23 

MODE-M/ 
MODE-A 
(model 
derivation) 

POPA 
(parallelization 
and optimization 
analysis) 

Figure 3 The DO-IT toolbox 

MOPS 
(model based 
optimization of 
parallel 
systems) 

gent Toolbox) depicted in figure 3, has been devised. The DO-IT toolbox consists of three main 
components, complementing the commercially available tools for SDL and MSCs. 

The analysis phase is supported by three tools, the MODE-A and MODE-M tools to derive 
performance data for a SDL specification on a given machine and the POPA tool, a tool to analyze 
whether the performance requirements and the design constraints provided in the requirements 
specification can be met by the given SDL specification. 

MODE-M The MODE-M tool (MOdel DErivation by Measurements) supports the annotation 
of SDL specifications with performance data. The performance data are derived by measuring 
the execution times of the SDL specification on a specific machine. As already outlined in the 
previous section, the term "machine" denotes the combination of hardware and system software 
that executes the SDL constructs. Thus, the computation and communication cost with which the 
SDL constructs are annotated reflect the cost of execution of the construct with the given system 
software on a specific hardware unit. Note that the cost also depend on the code generator and 
compiler that are used. Thus, each combination of code generator, compiler, system software 
and hardware constitutes a separate machine. In case several machines are at the disposal of the 
design process, each SDL construct is annotated with a vector where each element reflects the 
cost of the SDL construct on a specific machine. 

The derivation of the performance data with MODE-M is performed in a series of steps, itself 
involving a set of tools. First, the given SDL specification is automatically instrumented, i.e. ad
ditional instructions are integrated into the code that record start and end time of the relevant 
SDL constructs. The instrumentation is controlled by MSCs. Our current instrumentation tool 
performs the automatic instrumentation of C code (Dauphin, Dulz and Lemmen, 1995). How
ever, with support of the code generator for SDL, e.g. as provided by the SDT code generator, 
the respective instructions can be directly integrated into the SDL specification. This eliminates 
the need to associate each SDL construct with the respective parts in the C code. 

After instrumentation, the code is translated and executed on the target hardware. During exe
cution, the execution times are traced. The execution of the code is controlled by the input signals 
specified in the MSCs. As a result, only those parts of the SDL specification are typically exe
cuted for which a respective MSC exists. Thus, no performance data are traced for the remaining 
parts of the SDL specification. However, this is not a problem as long as the performance rele
vant parts of the SDL specifications are covered by MSCs, what is typically the case. 



www.manaraa.com

24 Part One Research Papers 

The monitoring of the system and the recording of the traces is either done in software or with 
the ZM4 hybrid monitoring system (Dauphin et al, 1994). The ZM4 allows for the monitoring 
of parallel as well as distributed systems and supports a wide range of hardware interfaces. For 
the analysis of the traces, the SIMPLE analysis tools (Dauphin et al, 1994) and (Hofmann et 
al, 1994) are used. An additional tool is needed that supports the back annotation of the SDL 
specification with the measured performance data. 

MODE-A Instead of the derivation of the performance data by means of measurements with 
MODE-M, the analytical modeling tool MODE-A (MOdel DErivation- Analytic approach) 
may be employed. Central component of this approach is the performance data base. It speci
fies for a set of relevant machines the performance data of the SDL constructs. Provided that the 
data base provides the performance data for the required machines, the annotation of the SDL 
specification can be done quickly without the need to actually implement and execute the SDL 
specification. The performance data for a particular machine in the data base can either be esti
mated based on performance data available for a comparable machine or based on measurements 
previously derived by MODE-M. 

POPA The POPA tool (Parallelization and OPtimization Analysis) is the third tool supporting 
the performance analysis. It provides feedback to the functional design indicating at which parts 
of the SDL specification further parallelization or optimization is needed to meet the perfor
mance requirements of the system. POPA derives its guidelines based on the performance re
quirements, i.e. the load on the system specified with the extended MSCs, the design constraints 
and the annotated SDL specification. POPA supports a path analysis and throughput analysis. 

The path analysis searches for the critical paths in the SDL specification. The search is based 
on the extended MSCs given by the requirements specification. POPA checks for each MSC 
whether the length of its critical path is within the limits specified in the requirements speci
fication. 

The throughput analysis computes the load for each SDL process or process instance that re
sults from the load imposed on the system as defined by the extended MSCs in the requirements 
specification. It checks whether the resulting load can be handled by the machines available, and 
whether the capacity of the interconnection network that connects the machines, is sufficient. 
A first implementation based on interworkings- a synchronous variant of MSCs developed by 
Philips Communication Industries- is described in (Hoppmann, 1993). 

MOPS During the functional design and analysis cycle, the SDL specification has been subse
quently prepared and optimized to meet the performance requirements. The next phase, called 
the synthesis or implementation design phase, is concerned with the actual mapping of the given 
SDL specification on the parallel machine. This is supported by the model based optimization 
tool MOPS (Model based Optimization of Parallel Systems). The tool decides the major design 
decisions concerning the static as well as dynamic aspects of the implementation. The design 
decisions comprise 

• the static mapping of the code on the machines, i.e. the decision on which processor a specific 
SDL process can be executed, 

• the granularity of the processes handled by the operating system or the runtime environment, 
• the dynamic load balancing strategy for the SDL processes for which more than one instance 

may exist, 
• the dynamic scheduling strategy, e.g. the priorities of the processes, and 



www.manaraa.com

The development of high performance parallel systems with SDL!MSC 25 

• the selection of the most appropriate combination of (I) hardware, (2) system software and 
(3) code generator for each SOL entity. 

The design decisions are computed based on the same information on which the POPA tool is 
based. However, the MOPS tool is much more sophisticated than the POPA tool since it has to 
come up with an actual solution to the design problem which comprises a whole set of NP-hard 
optimization problems, not just an analysis. 

Several optimization algorithms have been implemented to compute a part ofthe design deci
sions relevant to configurable message passing systems. A class of algorithms is based on the 
BBU algorithm (Mitschele-Thiel, 1993). They compute the mapping of the code on the ma
chines, the schedule on each machine, and the interconnection network connecting the machines, 
assuming each machine has a limited number of links that can be freely connected to other ma
chines, e.g. as it is the case with transputer networks. The algorithms employ various heuristics 
to prune the enormous search space (Mitschele-Thiel, 1994). In addition, a first algorithm based 
on clustering has been implemented to compute the mapping and the scheduling strategy in case 
the network topology is fixed (Haidt, 1994). All the algorithms optimize the response time of 
the system under given throughput constraints. The algorithms cover the design decisions de
scribed above, with the exception of dynamic load balancing and support for more than one type 
of machine. Thus, currently it is assumed that the SOL specification is implemented on a homo
geneous parallel architecture and that only one code generator and one type of system software 
is available. 

In order to incorporate all the design decisions, the development of a tool based on genetic 
algorithms is underway. A first prototype based on the MPGA package (Schwehm, 1993) has 
shown promising results (Schwehm and Walter, 1994). 

The implementation phase for SOL systems is sufficiently supported by commercial tools. A 
problem, however, is the lack of the ability of the tools of different providers to intemperate. 
Thus, different interfaces are needed to support the (semi-)automatic implementation of the de
sign decisions made by MOPS. 

5 SUMMARY 

In the paper a methodology for the integration of performance issues in the development process 
of parallel SOL systems is described. The methodology is based on two key concepts, namely 

• the formal specification of performance requirements and issues related to it and 
• the early integration of performance relevant design decisions in the development cycle. 

The proposed methodology is supported by the DO-IT toolbox, complementing the commer
cially available tools for SOL and MSCs. 

The goal of the DO-IT toolbox is to support 

• the automatic derivation of the performance data incurred with the execution of the SOL spec
ification on specific machines, 

• the analysis of the SOL specification for performance bottlenecks and 
• the synthesis of the system, providing algorithms to compute the major design decisions rel

evant to the implementation of SOL specifications on parallel systems. 



www.manaraa.com

26 Part One Research Papers 

Central to the early integration of performance issues in the design process are the extension of 
MSCs to formally specify performance requirements and the annotation of SDL specifications 
with the performance data associated with the SDL constructs. 

REFERENCES 

R. Braek, 0. Haugen. ( 1993) Engineering Real Time Systems- An object-oriented methodology 
using SDL. BCS Practitioner Series, Prentice Hall. 

P. Dauphin, R. Hofmann, R. Klar, B. Mohr, A. Quick, M. Siegle, F. SOtz. (1994) ZM4/SIMPLE: 
a General Approach to Performance-Measurement and -Evaluation of Distributed Systems. 
Readings in Distributed Computing Systems, Ed. T.L. Casavant, M. Singhal, IEEE Computer 
Society Press. 

P. Dauphin, W. Dulz, F. Lemmen. (1995) Specification-driven Performance Monitoring of 
SDL/MSC-specified Protocols. Proc. 8th Int. Workshop on Protocol Test Systems, A. Cav
alli, S. Budkowski (Ed.). 

J. Grabowski. ( 1994) Test Case Generation and Test Case Specification with Message Sequence 
Charts, Ph.D. Thesis, Universitiit Bern, Selbstverlag, Bern. 

A. Haidt. (1994) Entwurf und Realisierung eines Clustering-Verfahrens zur Optimierung der 
Schedule und der Topologie von parallelen Transputeranwendungen. Diplomarbeit, Univer
sitiit Erlangen-Niirnberg, IMMD VII. 

R. Hofmann, R. Klar, B. Mohr, A. Quick, M. Siegle. (1994) Distributed Performance Monitor
ing: Methods, Tools and Applications. IEEE Transactions on Parallel and Distributed Sys
tems, 5(6). 

K. Hoppmann. ( 1993) Lastanalysator fiir hierarchische Signalisiernetze. Diplomarbeit, Univer-
sitat Erlangen-Niirnberg, IMMD VII. 

ITU-T. (1993) Z.100, Specification and description language (SDL). ITU. 
ITU-T. (1993a) Z.100, Appendix I. ITU, SDL Methodology Guidelines. ITU. 
ITU-T. (l993b) Z.120, Message Sequence Chart. ITU. 
A. Mitschele-Thiel. (1993) Automatic Configuration and Optimization of Parallel Transputer 

Applications. Transputer Applications and Systems '93, R. Grebe et al. (Editors), vol. 2, lOS 
Press. 

A. Mitschele-Thiel, K. Dussa-Zieger. ( 1994) Near-Optimal Compile-Time Scheduling and Con
figuration of Parallel Systems. Proc. of the 1994 World Transputer Congress, Lake Como, 
Italy, lOS Press. 

A. Olsen, 0. Faergemand, B. Moller-Pedersen, R. Reed, J.R.W. Smith. (1994) Systems Engi
neering Using SDL-92. North Holland. 

M. Schwehm. (1993) A Massively Parallel Genetic Algorithm on the MasPar MP-1. Proc. Int. 
Conf. on Artificial Neural Nets and Genetic Algorithms (ANNGA '93), lnnsbruck, Austria, 
Springer-Verlag. 

M. Schwehm, T. Walter. (1994) Mapping and Scheduling by Genetic Algorithms, Parallel 
Processing: CONPAR'94-VAPP VI, Third Joint Int. Conf. Vector and Parallel Processing, 
Lecture Notes in Computer Science 854, Springer-Verlag. 

Telelogic Malmo AB. (1995) SDT 3.0 User's Guide, SDT 3.0 Reference Manual. 
Verilog. ( 1994) GEODE- Technical Presentation. 



www.manaraa.com

3 
Designing and implementing complex 
systems with agents 

P. MarcenacO), S. Giroux(2), J.R. Grasso(3) 
( 1) /REM/A, University of La Reunion BP 7151, 97715 StDenis 
Messag. Cedex 9, La Reunion, France. Tel: ( +262) 93-82-84 
Fax: ( +262) 93-82-60 email: marcenac@univ-reunion.fr 
(2) Tele Universite, 1001 Rue Sherbrooke Est, 2eme etage, Montreal, 
Quebec, Canada H2X 3M4. Tel: (+514) 343-6447 Fax: 522-3608 
email: sgiroux@teluq.uquebec.ca 
( 3) LGIT-IRGM, Observatoire de Grenoble, BP 53 X 38041 Grenoble, 
France. Tel: (+33) 76-51-45-17 Fax: 76-51-44-22 
email: grasso@ lgit.observ-gr .fr 

Abstract 
This paper describes an ongoing research in the Geomas project, initially intended to study 
applications of agent technology in complex systems. A complex system can be defined as a 
system in which behavior is bad-understood and designing such systems then requires specific 
considerations, justifying the need of the agent paradigm, when no other solutions could be 
found in an efficient way. The complex system tackled in this paper to illustrate our purposes is 
the prediction of volcano eruptions. Through the presentation of a simulation application for 
volcano phenomena, this paper focus on a software engineering approach to agent modelling in 
simulation. To address such issues, the paper describes an agent architecture through of as 
software engineering models of agents. A structural approach of the designing task is 
introduced by 1. conducting a top-down analysis to look for autonomous agents; 2. identifying 
internal behaviors, interaction processes and evolving facilities of each agent; and 3. looking at 
the emergence of the global behavior. 

The second part of the paper presents some elements of the implementation. ReActalk, an 
agent-oriented platform, has been chosen as a basis shell to develop simulation applications. 
ReActalk is built as successive layers developed upon Smalltalk-80, and supports large 
mechanisms of implementation for both individual agents and global system. It provides a safe 
combination of passive objects (Smalltalk classes) and actors, bringing serious advantages for 
the implementation of agents and societies in simulation applications. 

Keywords 
Agent oriented design, software engineering model of agents, MultiAgent Systems, Simulation 
Applications, Smalltalk-80. 



www.manaraa.com

28 Part One Research Papers 

1 INTRODUCTION 

As described in (Bond and al, 1991 ), different problems types are tacked successfully with 
MultiAgent Systems. This paper presents interesting results of the Geomas* research project 
held in the University of La Reunion (France). The main issue tackled in the project is the 
design and the implementation of distributed complex systems that will satisfy properties of 
MultiAgent Systems (Marcenac, 1995). The paper describes a paradigm to support the design 
of such systems, and introduces some key issues associated with the representation of software 
components in complex systems. 

More particularly, in order to explore the emergence of complex behaviors and to derive laws 
and predicable macro-behaviors out of micro-behaviors, we are conducting a MultiAgent 
modelling and simulation of the volcano of La Fournaise in La Reunion island, one of the most 
active volcano of the Earth. The aim of the simulation is to observe the global behavior to look 
for the number of eruptions according to their volume. To try to understand the complex 
behavior of the volcano, a computational model with communicating agents is then considered, 
the result of the system being the emergence of a global solution through the study of local 
magma pressures. This MultiAgent modelling helps us to investigate such an approach, 
allowing to integrate partial results in a same frame (Grasso and al, 1995). 

This work particularly focus on modelling real world components through agents, and points 
out what we perceive to be the most important issues in the design of MultiAgent systems for 
simulation of complex systems. To ease the designer's task, a method based on the role of both 
agents and MultiAgent System is proposed. It describes a structural approach of the designing 
task by: 

I. Conducting a top-down analysis to identify autonomous components of the real world to 
be integrated as agents, according to the philosophy of what could (or should) be an agent for 
simulation needs. This part of the work explores the real world by looking for roles played by 
components in the assumed global mechanism. Such components will then become agents if 
satisfying agent's principles (according to Gasser and Hunhs, 1987). 

2. Identifying characteristics and local goals of the agent and clearly separating internal 
behaviors, communication processes and evolving facilities of the agent, which we perceive as 
the most important parts of an agent in complex systems modelling. 

3. Identifying the global goal of the whole system, and giving it the role of the society of 
agents. The society of agents represents the whole system and expresses the emergence of the 
global behavior. 

This methodology involves two complementary studies: first, designing the whole system by 
looking for the emergence of a global watching behavior, and second, designing each agent, by 
identifying characteristics to be represented, and internal mechanisms required to describe local 
behaviors of the agent (Leman and al, 1994 ). 

A first prototype, Geomas-VI, has been developed with ReActalk, an agent -oriented platform 
enriched to develop simulation applications (Giroux and Senteni, 1991). ReActalk is built as 
successive layers developed upon Smalltalk-80 and supports large mechanisms of 
implementation for both individual agents and global system. Geomas V l was built to validate 
the designing process and the agent architecture, and for that, low degree of complexity was 
introduced. We choose to represent sample materials, such as homogeneous rocks and magma 
feeders, with very sample physical laws to validate the approach. 

However, this paper is going further. It keeps a formal view of the way to build such systems 
and proposes an agent model and architecture for simulation applications. We consider an agent 

* Acronym for Geophysics and multiagent systems. 



www.manaraa.com

Designing and implementing complex systems with agents 29 

model as the description of the concept of agent (internal behaviors, communication processes 
and evolving facilities), and an agent architecture as the organization of the society and the 
understanding of the emergence to explain and formalise the sequence of actions that will 
achieve the desired goal. This approach leads to a richer semantic in the description of agents, 
and in a more general way, in the description of the whole system. It allows a better software 
incrementality, leading to an evolutionary design process of distributed agent systems, 
consisting of a stepwise development and increment driven. 

This paper is divided into two main sections. Section 2 is the core of the paper, and discusses 
of: . 

I. How to design agents and MultiAgent Systems intended to simulate complex natural 
phenomena, and to derive the emergence of a global behavior from local interactions? 

2. How to formalize these concepts in an agent model and architecture? 

Section 3 presents some elements of the implementation. Modelling complex systems needs 
specific requirements, such as modelling the system with a variable size for instance. 
Programming these features can be done in ReActalk in several ways. As, from a software 
engineering point of view, the project aims at providing a better incrementality through reusable 
components, it is common to isolate those which seem to be standard in simulation applications. 

Finally, section 4 draws up a report of interesting results and points out future researches. 

2 DESIGNING A COMPLEX SYSTEM WITH AGENTS 

This section presents conceptual considerations of distributed systems for simulation. It begins 
by briefly presenting the domain and justifying the agent approach. How such systems could be 
designed is then investigated. Finally, to tackle this task, an agent-model is proposed. 

2.1 Agents and volcano modelling 

The volcano is characterized by a very complex structure, which does not follow global 
physical laws. However, it is driven by three main properties: I. non predicable property, a 
small external perturbation could generate a large-scale phenomena; 2. small external 
perturbations driven; and 3. scale in variance, describing the repetition of watching behaviors 
during time (Grasso and Bachelery, 1995). 

So the global and watching behavior of the volcano is completely determinist, because it is 
submitted to a well-determined law (third property), but at the same time, is driven by a non 
predicable behavior. The combination of these two properties defines a complex and chaotic 
real world. The volcano is then considered as a global system in which underlying dynamically 
processes are distributed. 

Object-oriented techniques do not provide satisfactory results when modelling such complex 
worlds. One of the main reasons of this failure is that considering a complex system as a unique 
entity, and eruptions as the results of the execution, does not allow to describe enough 
semantics to provide satisfying results. In this kind of centralized program, intrinsic 
mechanisms could not be deeply taken into account, leading to an insufficient description of the 
real world. To better understand how does a complex system work, the approach is to consider 
the program behavior as the result of a set of interactions between smaller and independent 
agents. 

The global behavior of the system is then based on matching the post-conditions of two kinds 
of local actions: first, reactive actions, in response to external solicitations, and second internal 



www.manaraa.com

30 Part One Research Papers 

actions, in response to the evolving of the real world component during time. So, the global 
behavior is evolving during time to take into account internal or external perturbations, and do 
not have to wait for any global result to do so. It appears then that any computational model 
could not provide any satisfactory results without autonomous facilities, justifying the need of 
agents. 

2. 2 How to design agents 

The method proposed is based on a top-down approach. In such a way, the real world is cut in 
tiny and independent pieces, each one playing a role for the application. At a first glance, the 
method looks like object-oriented methods such as (Coad and Yourdon, 1991), but the designer 
has to take care of the autonomy of software components, and the 'taskability', i.e. at what 
level of complexity the activity to be performed by an agent could be described. 

Internal behaviors describing the autonomous life and interactions are modelled at the same 
time, and are encapsulated together in autonomous agents. Many works have been based on 
this approach, leading to reactive agents (Brooks, 1989), (Demazeau, 1993), (Drogoul and al, 
1991). Recent works have defined hybrid architectures of agents (Woolridge and Jennings, 
1994), (Muller and al, 1995). Our method of conceptual design of autonomous agents follows 
this idea, except that, because of the complexity of the real world considered, cognitive agents 
are described, including more sophisticated protocols. It adopts an external perspective from 
which to look at agent contents, which relates to L. Gasser's ideas (Gasser, 1990), where 
agents organisation is treated as aggregated local components. 

The whole approach consists first in analyzing the real world to identify autonomous 
components of the real world to be integrated as agents, then designing each agent separately by 
looking at internal behaviors, communication processes and evolving facilities and finally 
designing the whole system. The whole system is then viewed as a society of agents and is 
responsible of the emergence of a global behavior. 

Illustration of the method in the case of the volcano complex system 
The first step of the work aims at determining what the simulation should provide in output by 
identifying the role of the whole system, and what are the roles played by any software 
components in the system . 

• Role of the simulation application: Let remind the aim of our simulation: to observe the 
global behavior to look for the number of eruptions according to their volume. The role of the 
corresponding MultiAgent System is then to get knowledge on eruptions which could appear. 
Inputs of the system consist in magma injections controlled by local components (agents) and 
outputs consist in measuring the amount of magma ejected from an eruption . 

• Looking at agents in terms of roles played by real world components: The internal structure 
of the Piton de Ia Fournaise is complex and bad-known, but all researches made during the 
fifteen past years are converging: the volcano is a network of magma feeders. Elements 
composing the network are often called 'magma lens', as the network itself is called 'surface 
tank'. Magma feeders (lens) are inter-connected in a continuous or temporally way, and are 
separated by a matrix of rocks coming from previous eruptions. However, one can note that 
magma arrivals are selectively produced; this would reinforce the independent nature of the 
surface tank, because it works lost of the time in autonomous regulation. 

So, lens could be considered as isolated with their own behavior: according to their size, their 
shape, the magma, and collecting rocks properties, they will react to internal or external 
perturbations. Internal perturbations are due to magma crystallization inside the lens causing 
overpressures, and external ones are due to overpressures coming from anywhere else in the 



www.manaraa.com

Designing and implementing complex systems with agents 31 

volcano. From this analysis, both lens and rocks are playing a defined role in eruption 
mechanisms, and have then to be modelled as agents in the system. 

2. 3 The agent model 

The Geomas system includes planner-based agents, each one representing a role. An agent is 
bearing semantics on what it has to do for the whole global system. However, the design, 
implementation and assessment of MultiAgent Systems for simulation raise many specific 
issues. More particularly, in simulation environments, three main properties should be studied 
for each agent: interaction, behavior and evolving . 

• Interaction is a basis mechanism when working with agents, it allows to consider a global 
result as emerging from exchanges between agents. As it is the case in many domains, each 
agent in a complex system models a natural component of the real world. This agent is assumed 
to evolve in a specific environment and play a role in its surroundings. So modelling 
interactions in the system is fundamental for simulation purposes . 

• The behavior part of an agent includes what the agent is supposed to do during his life. The 
behavior can be internal, by working by his own (i.e. without any external solicitations) or 
external (i.e. when receiving external solicitations). This behavior describes the agent 
autonomy. In complex systems, each component is assumed to be independent, and could work 
without external solicitations (see the case of a lens for instance) . 

• Finally, the last property which should be carefully studied, is the agent capability to evolve 
during time. Each real world component is subject to modifications. These modifications affect 
both data and behaviors of the agent, and depend on what was made by the agent during his 
life. 

Matching the model: example 
For the volcano simulation, two agents, lens and rock, are designed in such a way: 

• Lens: one of the main issue in designing a lens is to model a running fluid flow (magma 
injection for instance). Indeed, if a volume of magma V has to be transferred to a lens, this one 
can not be programmed to receive the total amount in one time, because it could not be able to 
compute its back pressure again and to adjust its behavior during the fluid flow. So the input 
volume to transfer will be discretized in multiple !!.Vs. Performing then a low volume item !!.V 
at one time results in a dynamic updating of the local pressure and perhaps a different reaction to 
the next !!. V to perform. From a programming point of view, !!. V s represent time units required 
to compute again the internal pressure of a lens between two arrivals, i.e. execute the 
appropriate method in the agent lens . 

• Rock: the behavior of a rock agent is expressed by its resistance to magma pressures. The 
interaction consists in propagating pressures to his neighboring components, and the evolving 
is linked with the internal change of structure when magma penetrates, breaking the structure of 
the rock. To balance this behavior, the value of the resistance can be randomly chosen between 
two given limits. 

2.4 The agent architecture and the emergence of a global behavior 

The agent architecture describes how agents are organized to form a society. In Geomas, the 
society is organized as an ecosystem, driving all agents to satisfy the desired role and provide 
an external behavior. The architecture of the ecosystem includes: 

• The role of the whole system, expressed through the external behavior, and driven by input 
and output parameters . 

• Knowledge about the structure of agents composing the system (such an organization is 
represented in Geomas with a network, where agents correspond to nodes and interaction 
possibilities to edges. The number of agents determining the network size is a global parameter. 



www.manaraa.com

32 Part One Research Papers 

• A filtering process, which is responsible of localising which agent will be involved to be 
consistent with the current goal of the ecosystem. 

Matching the architecture: example 
The role of the MultiAgent system implementing the volcano simulation is to provide a global 
behavior allowing to count the number of eruptions according to their volume. Inputs of the 
system constitute magma injections controlled by local components (agents), while outputs 
measure the amount of magma ejected from an eruption: 

• Example of input parameter: The choice of the injection mode of each lens for a simulation is 
a global parameter of the system. The injection mode can be continuous or discrete. In 
continuous mode, magma could be injected in a lens even if the network is not stable. In 
discrete mode, the network has to be stabilized before a new injection will be applied again . 

• Example of output parameter: Two ways to collect eruptions could be envisaged when an 
injection is applied as input in a lens: counting the amount of ejected magma together for all 
eruptions, or counting one eruption and the magma amount ejected each time an eruption 
appears . 

. Knowledge about structure: the number of agents determining the size of the network sets 
the number of lens and rocks for a specific simulation. In addition, the network can be chosen 
in a loaded initial state or unloaded. When loaded, each initial pressure of a lens will be 
initialized by a value which is just under the resistance of the rock, which signifies that the 
volcano is in a critical state. The simulation will then quickly provide eruptions. 

Another parameter which constitutes a very interesting feature, is the number of connections 
between agents . It addresses the way to design a real world as a three dimensional network. 
When the simulation begins to run, each agent composing the society (rocks and lens) 
establishes his accointances (neighbors) to be able to communicate with other agents in an 
asynchronous way. This parameter determines what we call the degree of communication of the 
agents in the system. As connections are determining the ability of an agent to communicate, a 
part of the communication protocol is then defined by setting this parameter. So the number of 
connections describes the influence an agent could apply on another and defines a spatial and 
geometric disposition of agents in the universe. A sample heuristic to implement the degree of 
communication is to consider a 'corona' in the plan, as illustrated in Figure 1: 

r-- - - r- r--

I I 
@ aturaiEiement 

I I I st degree 

I (~C I D 2nd degree 

I J D 3rd degree 

I I 
Figure 1 Implementation of a degree of communication. 

Finally, note that modelling the volcano as a Cartesian plan wrongly induces a plane view of 
the edifice. However, it is then possible to abstract this projection, by increasing the degree of 



www.manaraa.com

Designing and implementing complex systems with agents 33 

communication. This point of view allows a modelling of the real world in three dimensions 
(30), by considering 30 connections in a network, as shown in Figure 2: 

Figure 2 30 structure of the edifice. 

0 Len 

O Rock 

The next section gives some details on the implementation of the system. 

3 SOME ELEMENTS OF THE IMPLEMENTATION 

3.1 Overview 

The whole application described in section 2, Geomas V 1, has been implemented as a 
prototype, using an agent-oriented platform named ReActalk (Giroux and Senteni, 1991 ), 
(Giroux, 1995). ReActalk is an open environment which provides large adaptive mechanisms 
for both individual agent and global system. 

ReActalk proposes a reflective MultiAgent platform. ReActalk is based on Actalk (Briot, 
1989). Actalk is an actor platform for the study of actor paradigms within Smalltalk-80. Indeed, 
Actalk is a minimal actor system (Agha, 1986), built on top of Smalltalk-80, and designed in 
order to provide a framework for the study and the exploration of actor languages. The 
conceptual notion of autonomous agent is then implemented and driven by such actors. When 
an agent is created, a meta-agent is given to it. This meta-agent acts as a private interpreter and 
is itself a society of agents. Seeing the meta-level as an organized society leads to an 
environment in which different mechanisms inherent to the object and actor paradigms can be 
easily used and integrated (asynchronous and synchronous messages passing, behaviors with 
and without dynamically evolving ... ). This environment provides a safe combination of passive 
objects (Smalltalk classes) and actors and represents a serious advantage for the implementation 
of agents and societies in simulation applications. Figure 3 illustrates such a platform as a basis 
tool for the development of agent-oriented simulation applications: 

~ Inheritance Lml.. 

B r '""· """'""' 
L rof'h Cia" llr ln\tancc \JriabiC\ 

Figure 3 ReActalk, as a basis tool to develop agent-oriented simulation applications. 



www.manaraa.com

34 Part One Research Papers 

The notion of autonomous agent is implemented in the AgentBehavior class. Each agent is 
moving in a global entity representing the society of agents, and forming the ecosystem. An 
ecosystem is responsible of all agents it is composed of, and is associated with I. a structure to 
organize the society; and 2. a structure to dynamically build and manage the society. 

I. Derived from the ecosystem is the organization class which allows to organize the society 
as a graph. A graph is defined by a set of nodes representing the associated agents composing 
the society, and a set of edges, one edge between two agents representing a communicating 
possibility at running step. This graph is built from the location of agents the ones compared 
with the others. So, the agent's position and the neighborhood determine a matrix in which each 
agent has his own collection of neighbors. 

2. To introduce the management of the society, ReActalk proposes a well-adapted structure 
for this kind of modelling: the CartesianPlan class. By making an instance of the CartesianPlan 
class explicit in the organization class, the society of agents is managed in an efficient and 
dynamically way. This instance, named universe, is illustrated in Figure 4: 

iW } Agc:ntsOrg~itation 
( . v IR lhc Socoety 

umvcrse 

I 

t 
lnstana: ol 

Figure 4 Organization of agents in a cartesian plan within ReActalk. 

In summary, when developing and experimenting with agents, the programmer is connected 
to the ReActalk environment. Each agent will be defined as a ReActalk agent, and each agent is 
a member of an organization described as a graph. 

3.2 Implementing individual agents 

As the first step of the designing, two autonomous components of the real world have been 
identified for the role they are supposed to play in eruptions mechanisms: 'lens' and 'rock'. A 
lens describes an amount of magma exerting pressure on its surroundings, i.e. rocks. It is 
characterized by an internal pressure and an amount of magma. Its behavior is mainly described 
by geophysical laws such as back pressure laws, indicating how to compute, between two 



www.manaraa.com

Designing and implementing complex systems with agents 35 

arrivals of ll V s, the new value of the pressure. Three back pressures laws are implemented 
(constant, linear and gaussian) and can be switched at each simulation. As internal parameters 
driving eruptions are not well-known, this constitutes an important facility of the system. 

A rock is characterizing a resistance to the pressure of the lens, and its behavior is quite 
sample at the moment: depending of the value of the resistance, a rock could let drain the 
magma across or not. This sample modelling is not realistic when looking for internal structures 
of the volcano. As the aim of the system is to provide a basis for studying eruptions, and the 
link with the geologic structure of the volcano has not yet been identified, the complexity of a 
rock does not matter. However, taking account the dynamic evolving of the rock and modelling 
its complexity are under investigations in Geomas V2. 

However, one must keep in mind that lens and rock agents will evolve in a global entity 
representing their society, the ecosystem. As we seen it before, each agent in the ecosystem has 
to know his current position for easier identification, and his neighborhood for knowledge on 
which agents he could communicate with. With that aim, two slots are added, position and 
neighbors, plus one for the membership of the ecosystem. 

Furthermore, these characteristics are not specific to a rock and a lens; and by the 
generalization mechanism, are isolated in an abstracted class, NaturalElement, between the 
AgentBehavior class of ReActalk and application classes. This kind of designing which looks at 
roles and intrinsic properties of an agent and a society of agents, leads to develop an abstracted 
level of reusable components. Figure 5 illustrates such a feature: 

Actalk/ReActalk 

SmallTalk-80 

aturalElement Cia 
~ posouon 1::: neoghbors 

ecosystem 

4 Inheritance Link 

B} oft ware Platforms 

~ Environment 

D Application 

Figure 5 Different Software levels upon Smalltalk-80 to develop simulation applications. 



www.manaraa.com

36 Part One Research Papers 

3. 3 Implementation of the volcano structure 

To implement the structure of the society, a class named PitonFournaise has been defined. This 
class describes the whole structure of the volcano and allows to observe the global behavior. 

One can note that in the case of the volcano application, the organization of the society is 
static; agents do not change position, nor neighbors. As a graph is a quite-well adapted structure 
in dynamic environments, it is not required in this case. So the PitonFournaise class could also 
be derived directly from the ecosystem class. This point of view bears a performance advantage 
while the system runs with several thousands agents in parallel, but is too restrictive to be used 
anyway. 

3.4 Results 

The resulting product Geomas VI has been tested for six months in our team by geophysical 
researchers. It has been performed more than two hundred simulations by updating input 
parameters in each agent (Lens, Rocks and PitonFournaise). Each simulation has been run on 
Sun Spare Solaris 2, during 8 to 10 hours, with around 7,500 agents working in a parallel way 
(this number has been assumed to be sufficient to match the real world). Around 33000 
eruptions were accounted for each simulation (only 76 are actually registered in real data on the 
Piton de Ia Fournaise!). 

These simulations have pointed out very interesting and promising results. Real data 
registered have been compared with simulation results, and some mechanisms have been 
identified and partially explained. In addition, some of the complex parameters assumed to play 
a role in eruption mechanisms have been identified too. 

4 CONCLUDING REMARKS 

In simulation applications, a MultiAgent approach becomes fundamental when tackling complex 
problems, and when no other solutions could be found in an efficient way. Through the 
presentation of a simulation application to understand volcano behavior, this paper focus on a 
designing methodology for MultiAgent Systems and proposes then an agent architecture 
through of as software engineering models of agents. 

Designing a MultiAgent System for simulation purposes can be done with a structural 
approach, by: 

I . Conducting a top-down analysis to identify autonomous components of the real world to 
be integrated as agent. 

2. Identifying characteristics and local goals of the agent and clearly separating internal 
behaviors, communication processes and evolving facilities of the agent. 

3. Identifying the goal of the whole system, this one expressing the emergence of the global 
behavior. 

Finally, to implement these ideas, a specific tool, ReActalk, has been presented as a basis 
platform for developing simulation applications. Actual works on MultiAgent Systems are 
laying the foundations of new models of computing and interaction, and this kind of precision 
enforces the necessity of a well-adapted software development tool, which contains intrinsic 
properties of the agent-oriented paradigm. ReActalk provides satisfying mechanisms to 
implement a specific level of agents for simulation purposes and easily implement the 
architecture. The software complexity could then easily be increased at each stage, by adding 
more complex protocols as developing more complex software. This approach authorises an 



www.manaraa.com

Designing and implementing complex systems with agents 37 

incremental development and an evolutionary design process, in which stages consist in 
expanding an operational system. 

The architecture has been studied with the aim of helping software designers to get closer to 
such goals. One of the next step of the project is to add more complexity in Geomas V l, by 
taking account the dynamic evolving of the rock and modelling its complexity. 

ACKNOWLEDGEMENTS 

This project is supported by the IREMIA laboratory of the University of La Reunion and LGIT 
in Grenoble (France). We would like to thank people who have brought their contribution to 
that work, and more particularly M.L. Aimelet, S. Calderoni, D. Grosser, F. Lahaie and E. 
Valcares. 

REFERENCES 

Agha, G. ( 1986), Actors: a model of concurrent computation in distributed systems, MIT 
Press, Cambridge, Massachussetts, USA. 

Bond, A.H. and Gasser L. ( 1991 ), An analysis of problems and research in DAI, in Readings 
in Distributed Artificial Intelligence (Bond and Gasser eds), Morgan Kaufmann Publishers, 
Inc., San Mateo California, USA, Pages 3-36. 

Briot, J.P. (1989), Actalk: a testbed for classifying and designing actor languages in the 
smalltalk-80 environment, ECCOP89, European Conference on Object-Oriented 
Programming, Cambridge, England. 

Brooks, R.A. ( 1989), A robot that walks: emergent behaviors from a carefully evolved 
network, AI memo, 1091, Massachusetts institute of Technology, Cambridge, 
Massachussetts, USA. 

Coad, P. and Yourdon, E. (1991), Object-Oriented Analysis, Object-Oriented Design, Yourdon 
Press, Prentice Hall. 

Demazeau, Y. (1993), La plate-forme PACO et ses applications, 2eme journee nationale du 
PRC-IA sur les systemes multi-agents, Montpellier, France. 

Drogoul, A., Ferber, J. and Jacopin, E. (1991), Viewing cognitive modeling as eco-problem
solving: the pengi experience, Cahiers du I.AFORIA, Rapport N° 2/91, University of Paris 
VI, France. 

Gasser, L. and Hunhs, M.N. (1987), Distributed Artificial Intelligence, volume 2, Pitman, 
London, UK. 

Gasser, L. ( 1990), Conceptual modeling in distributed artificial intelligence, Journal of the 
Japanese Society for Artificial Intelligence, 5:4. 

Giroux, S. (1995), Agents and actors: a necessary unity, IJCA/ Worshop on agents, Montreal, 
Canada. 

Giroux, S. and Senteni, A. (1991), ReActalk, a reflective version of Actalk, OOPSLA '91 
Workshop on Metalevel Architecture. 

Grasso, J.R. and Bacbelery, P. (1995), Hierarchical organization as a diagnostic approach to 
volcano mechanics: validation on Piton de Ia Fournaise, Geophysical research Letters, in 
press, 1995. 

Grasso, J.R., Giroux, S. and Marcenac, P.(l995), A multiagent approach for volcano 
behavior simulation, Application of Artificial intelligence Computing in Geophysics, 
International Union of Geodesy and Geophysics, 21st General Assembly, Boulder, 
Colorado, USA. 



www.manaraa.com

38 Part One Research Papers 

Leman, S., Marcenac, P., Aube, M. and Senteni, A. (1994), Multiagent models for 
cryptarithmetic problem solving, CWDA/'94, Canadian Workshop on Distributed Artificial 
Intelligence, Banff, Alberta, Canada. 

Marcenac, P.(1995), The Geomas project: research report, /REM/A, April1995, 45 Pages. 
Muller, J.P., Pischel, M. and Thiel, M. (1995), Modeling reactive behavior in vertically 

layered agent architectures, in Intelligent Agents, (M. Wooldridge, N.R. Jennings Eds), 
Proceedings of the ECAI-94 Workshop on Agent Theories, Architectures, and Languages, 
Springer-Verlag, Lecture Notes in Artificial Intelligence, Vol. 890, Pages 261-276. 

Wooldridge, M., Jennings, N.R. (1994), Agent theories, architectures, and languages: a 
survey, in Intelligent Agents, (M. Wooldridge, N.R. Jennings Eds), Proceedings of the 
ECAI-94 Workshop on Agent Theories, Architectures, and Languages, Springer-Verlag, 
Lecture Notes in Artificial Intelligence, Vol. 890, Pages 1-39. 

BIOGRAPHY 

P. Marcenac is lecturer at the University of La Reunion (France). He obtained his PhD in 1990, 
and is involved for five years in multiagent systems. He actually manages the Geomas research 
project. S. Giroux is researcher at Tete-University in Montreal (Canada). During his PhD and 
post-doctoral studies, he developed ReActalk, as an open environment to develop MultiAgent 
Systems. J.R. Grasso is a geophysical researcher in LGIT (France). His main interest is to 
apply a new paradigm to model volcanoes, based on the agent methodology, in order to capture 
their internal behaviors. 



www.manaraa.com

4 
Communications are 
Design Methodology 
Tolerant Concurrent 

A.M. Tyrrell 
Department of Electronics 

Everything: 
for Fault
Systems 

University of York, Heslington, York, YOJ 5DD, Email: 
amt@ohm.york.ac.uk 

Abstract 

A 

Limiting the extent of error propagation when faults occur and localising the subsequent error 
recovery are crucial elements in the design of fault tolerant parallel processing systems. Both 
activities are made easier if the designer associates fault tolerance mechanisms with the 
underlying communications of the system. With this in mind, this paper has investigated the 
design of such systems, which enforces a design concentrating on the modelling and analysis of 
interprocess communications providing a better match between the needs of the fault-tolerant 
mechanisms and the communication structures themselves. 

Keywords 
Fault-tolerance, concurrent systems, communications, software design. 

I INTRODUCTION 

A distributed processing system, comprising a set of discrete processing units, offers the user 
not only the prospect of increased efficiency and throughput through parallelism, but its inherent 
redundancy might also be exploited to enhance reliability. To do so requires a properly designed 
fault tolerance infrastructure which maintains the integrity of the system under fault conditions, 
in particular communications. This paper describes a design methods which concentrates on the 
communications within the system, which facilitates the design, placement and implementation 
of fault-tolerant software mechanisms across a parallel system to ensure safe operations in the 
presence of faults. 

Fault tolerance is often incorpomted into a design as a ruggedisation process to protect a 
process or set of processes regarded as critical to safe system operation (Lee and Anderson 
1991 ). The fault tolerdnce mechanisms are required to recognise faults by the errors they cause 
and to prevent error migration from the faulty process to elsewhere in the system, so that error 
recovery is localised. The extent of the error recovery operation can be limited if the 
communications structure in the system can be analysed accurately, and a boundary can be 
identified within the state-space of the distributed system across which error propagation by 
interprocess communication is impossible; it must include all processes which interact with the 
function being protected and exclude all processes that do not interact with it. In other words, 
the state-space of the system ha.o; to be partitioned into a hierarchy of atomic actions (Jalote and 
Campbell 1986). It is then possible to design a distributed error detection and recovery 
mechanism around the atomic action which ensures that all the processes affected by the fault 



www.manaraa.com

40 Part One Research Papers 

co-operate in recovery. This localisation of fault tolerance simplifies the design and can help to 
meet timing constraints in real-time systems (Anderson and Knight 1983). 

The design described in thi;; paper concentrates on the communications mechanisms within 
an application, and within the fault tolerance mechanisms themselves. The design shows how 
different communication structures help not only in the design of the particular application iL'!elf, 
but more importantly in the design of the fault-tolerant mechanisms protecting the system 
against faults latent in the system. 

2 ATOMIC ACTIONS AND FAULT-TOLERANCE 

Firstly, let us consider the crucial role communications play in the operation of fault-tolerant 
mechanisms in a parallel processing environment. To an external observer the activity of a 
process is defined by its sequence of external interactions; any internal actions (of which there 
may be many) can not affect the external observer, at least until the next external interaction. 
This allows the concept of an atomic action to be derived: the activity of a set of processes is 
defined as an atomic action if there are no interactions between that set of processes and the rest 
of the system for the duration of that activity. The extension to hierarchically nested atomic 
actions is straightforward. These concepts are well-known in distributed transaction processing 
(Mancini and Shrivastava 1988) from which tield many other attributes of atomic actions, such 
as serialisability, failure atomicity and permanence of effect can be defined. 

The process of identifying the atomic actions within a parallel system design brings into 
clear focus the structure of interprocess interactions and thus the route by which errors might 
propagate under fault conditions - an obviously crucial aspect in the detection and 
implementation of the fault tolerant mechanism. All common mechanisms for providing fault 
tolerance in parallel systems, such us forward error recovery (Rundell 1975), N-version 
programming (Avizienis 1985), conversations (R;mdcll 1975), consensus recovery blocks 
(Scott et al. 1987) and distributed recovery blocks (Kim and Welch 1989), have to cope with 
error confinement and achieve this by imposing logic structures 'around' atomic actions. 

A generalised fault tolerant mechanism could be considered as a co-ordinated set of 
recoverable blocks. with one recoveruble block in each interacting process, 11llowing distributed 
error detection and recovery. The mechanism is bounded by a set of start states (entry line), a 
set of finish states (exit li11e) and two side walls which completely enclose the set of interacting 
processes which are party to the mechanism, and across which interprocess interactions are 
prohibited. The structure is indicated diagrammatically in Figure I. Note that it is the 
communication pattern that defines the side walls, processes which are interacting are within the 
side walls (processes R. S and T), processes which do not interact are outside the side walls 
(processes P and Q). 

Two types of communications are illustmted in Figure I; the lines between the 'recoverable 
processes' represent the application inteructions, and are of a consequence of data requirements 
between the parallel processes. It is these interactions th<ll will define where atomic action exist 
within the system structure, and thus where fmllt-tolerunt mechanisms should be placed. The 
second type of communications are those forced upon the application by the fault-tolerant 
mechanisms. These will typically consist of exchanging data values for voting and/or for 
comparison, of passing reconfigumtion information and signals around the system, and for the 
recovery of the parallel processes within the fault-tolerant mechanism. This second class of 
communicntion would not be present in non fault-tolerant systems, and in many respects should 
be more secure thm1 the 'normal' applicntion communicutions. 

The entry line defines the start of the atomic action and consists of a co-ordinated set of 
recovery points for the participating processes. These processes may enter the atomic action 
asynchronously. The exit line comprises u co-ordinated set of acceptubility tests, or voting 
procedures. Only if ull participating processes pass their respective acceptability tests (or the 
voting procedures are successful) is the mech<mism deemed successful and all processes exit, in 
synchronism, from the action. If any acceptability test is failed, recovery is initiated and 



www.manaraa.com

Communications are everything 41 

processing "passed" to another set of recoverable processes, or set of actions. Thus all 
processes in the atomic action co-operate in error detection . Note how both synchronous and 
asynchronous communication structures are present in these mechanisms. 

PnJt.'CS"-''"' 
tiUt)ldc 
wnrn~ .:.lll1ion 

lnl~r.-.1in!! 
Jlft"""''';~ 

Figure I. The structure of a fault tolerant mechanism involving processes R, S, and T. 

Any attempt to incorpomte an entry line and an exit line at arbitrary locations in a concurrent 
system is unlikely to lead to a properly formed recovery mechanism . . It is necessary to identify a 
boundary within the state space of the complete set of processes across which error propagation 
by communication is prevented (Tyrrell and Carpenter 1995). Clearly, this boundary will be the 
boundary of an atomic action. since stu.:h a boundary, of necessity, prohibits the passing of 
information to any process not involved in the atomic action and similarly embraces all 
interacting processes within the atomic action. Recovery mechanisms can be nested 
systematically in the same hiemrchical fashion as atomic actions. If this duality is not imposed, 
then should the system attempt to backtrack and recover in response to a fault, progressive 
collapse by the domino effect (Randell 1975) can occur. 

3 FAULT MODEL 

It is important at this stage to say a little about the types of faults that can be expected in the 
systems that are being considered. The fault model for these system comprises of both software 
and hardware faults. 

Hardware Faults: 

dead processor (due to failure of processor or support chips), 
dead interprocessor communication (due to failure of communication hardware), 
erroneous interprocess communication (due to transient fault in processor or communication 
hardware). 



www.manaraa.com

42 Part One Research Papers 

Software Faults : 

differential mode faults (ie. software versions fail independently of each other), 
common mode faults (ie. software versions fail in same manner under the same conditions), 
faults due to difficulty factor (ie. versions fail in different ways under the same system 
conditions). 

While more subtle and complete fault models have been suggested, this fault model provides 
sufficient ability to give a good idea of the effectiveness of the fault-tolerant mechanisms under 
consideration. 

4 COMMUNICATIONS MODEL 

A common communications model used in many fault tolerant systems is that of communicating 
sequential processes (CSP). This model provides a synchronous non-buffering 
communications procedure only. While this allows analysis of communications structures, and 
a effective implementation environment, eg transputers, there are some limitations to this model 
when used for fault-tolerant mechanism design and implementation. This form of 
communication is useful for the description of communications that are required between 
processes that are being forced into synchronous operation at points through their non
synchronous (asynchronous) execution. Problems do occur when implementing and analysing 
such system designs, when time-outs are introduced to prevent these synchronous 
communications from allowing a faulty process to stop non-faulty processes. 

A more comprehensive suite of communication mechanisms are required if fault-tolerant 
mechanisms are to be really useful in real applications. Such a communications model has been 
described by Simpson (Simpson 1994a). This communications model will be used here to 
design fault-tolerant mechanisms and show how they would be implemented with such a model. 

The communications model can be broadly categorised into one of four regions (Simpson 
l994b), this is illustrated in Figure 2. 

Destructive Non Destructive 
Reading Reading 

RectJerccm Reader cannot 
he he/Jut> be held II[> 

Destructi vc + + Writing 

Writer Cllmrot 
he held up SIGNAL POOL 

Event Dllla Reference Data 

Non Destructive + ~ Writing 

Writerccm CHANNEL CONSTANT 
he helclut> Me.uage Delta Cmifiguratimr Data 

Figure 2 Communication Model. 



www.manaraa.com

Communications are everything 43 

Interaction Function Symhul Writer Can Be Reader Can Be 
Held Up Held Up 

POOL + N N 

SIGNAL + N y 

CHANNEUBOUNDED RUFFER + y y 

STIMULUS/INTERRUPT + N y 

RENDEZVOUS + y y 

HANDSHAKE + y y 

OVERWRITING BUFFER + N y 

CONSTANT ~ . N 

REMOTE FUNCTION CALL + y y 

REMOTE THREAD INVOCATION + y y 

Figure 3 Enhanced Communication Model. 

In (Simpson J994b) these communication models are described as follows: Pools allow 
reference data to be passed from one function to another. This data is retained within the pool 
where it can be consulted at any time by the reader and refreshed at any time by the writer. 
Signals allow event data to be passed from one function to another. This data can be overwritten 
at any time by the writer, but can only be actioned once by the reader. The signal is important in 
real-time systems as it avoids back propagation of temporal interaction effects. Channels allow 
message data to be passed from one function to another. It is normal for channels to have a 
capacity of more than one, when they become synonymous with a bounded buffer. The 
message in a channel cannot be lost. Constant.~ can be considered as configuration data, and 
provide a write-once capability. 



www.manaraa.com

44 Part One Research Papers 

Note in this model the categories are with respect to destructive reading and writing. Within 
this simple model, "standard" message passing can be lixed, as can a form of shared data space, 
asynchronous data, and even global duta. 

This model can be further enhanced to incorporate system characteristics such as buffer size 
(shown as n or 0), uni- and bi-directionality (shown by the arrows on lines) and non-data 
passing (ie stimulus only) indicated by a blob. This enhanced model (Simpson 1994b) is 
shown in Figure 3. 

These enhancements give what is thought as a full model of communication procedures 
required to describe computer systems. It is noted in (Simpson 1994a) that signal and pool 
variants are the most useful for real-time applications. These are difficult to model in 
synchronous-only models, however this model provides the dynamic characteristics required 
for these models. We will now go on to show how this communications model can be used to 
design fault-tolerant mechanisms in a parallel environment. 

5 FAULT-TOLERANT DESIGN FOR CONCURRENT SYSTEMS 

The use of atomic actions enables many of the problems associated with introducing fault
tolerance into distributed/parallel system to be solved. One of the major problems with these 
ideas is that in order to identify processes that may be considered atomic actions, the dynamics 
of the processes and thus the state space of the system must be modelled. The author has 
successfully achieved such analysis by using Petri-net and GMB graphical methods, and CSP 
mathematical methods (Carpenter and Tyrrell 1989, Tyrrell and Holding 1986, Tyrrell and 
Carpenter 1995). 

For the introduction of fault-tolerant mechanisms to aid the system designer, there should be 
provided a set of framework proa.ue.1· within which the application program will sit. The 
structure of these framework processes should he of no concern to the application designer, the 
only application specifics in its incorporation into the design should be the design of the error 
detection mechanisms (whether hardware or software, this will always he application 
dependent), and in the actual placement of the framework process across the distributed/parallel 
system. 

Once the atomic action boundaries have been identified, the chosen framework process 
(such as, forward error recovery, backward error recovery, and error masking) can then be 
placed around these safety critical application processes. We will now look at one of these 
mechanisms, and see how the communications model helps in its design (and in a final 
implementation). 

Enhanced Distributed Recovery Blocks. 

The mechanism used is based on distributed recovery blocks (Kim and Welch 1989). Jt is 
a~·gued that distributed recovery blocks (ORB) are well suited for real-time control applications 
smce: 

ORB require code versions of graded complexity; a requirement which should easily be 
satisfied by the plethora of new and classical control theories which are in existence, 
ORB offers distributed operation over a number of redundant processing nodes, 
In the event of a li.llllt ORB dynamically reconfigures the opcrution of these nodes in order to 
obtain the maximum possible performance from the hardware available, 
In the event of faults ORB will fail gracefully, always using the highest graded code version 
available to it, 
ORB relies on acceptance tests, rather than voting, to judge the correctness of results; this is 
important as voting between alternative control algorithms can be unreliable due to their 
tendency to produce correct, hut different results, 



www.manaraa.com

Communications are everything 45 

ORB is proposed as a uniform way of dealing with hardware and software faults; it obviates 
the need to identify the origin of a fault, which is a costly overhead in terms of time, and has 
been a major difficulty in real-time computing designs. 

ORB are based on the standard method of recovery blocks, Figure 4. The enhancements 
incorporated within ORB include the concurrent execution of the try blocks over a distributed 
network of processing nodes and the dynamic rcconfiguration of nodal operations in the event 
of a fault. The systems proposed in this paper takes the basic ORB and introduces extra 
acceptance tests to reduce the chances of Byzantine type errors and is termed an Enhanced ORB 
(EORB), Figure 5. The acceptance test in the EORB scheme are carried out concurrently on N 
different nodes. In addition the local database of previous data which is maintained on each 
node will be exactly the same. The ORB maintains separate databases on each node these are 
regularly exchanged and compared, thus guaranteeing that they are the same and eliminating the 
need for any form of roll-hack recovery in the event of a detected error. EORB performs a vote 
at the start of every iteration to ensure each node is operating with exactly the same data. 

lnptn 

()Ulf'M.II 

Figure 4 Distributed Recovery Block. 

6 COMMUNICATION FAILURES 

In an earlier paper on the EORB (Eiphick et al. 1993 ), a design was reported which in addition 
to designing the EDRB around real-time applications a number of features were added to the 
design to help cope with communication failures. When implemented with a CSP model, link 
procedures were used to detect communication failures (or time-outs), ensuring that other non
failed nodes continued to operate correctly. Reinitialisation procedures were also used to reset 
failed nodes and allow them to be re-included on the next iteration of the loop (assuming non
permanent hardware faults). The calculation of these time-outs were non-trivial and prone to 
errors. 

These link procedures where very much a consequence of the CSP, synchronous model 
used. Here it is shown how this new communications model gives a more general solution, 



www.manaraa.com

46 Part One Research Papers 

allowing particular interactions between parallel processes to be more closely modelled by 
specific communication structures. 

~ ... . . .. 

Figure 5 Enhanced Distributed Recovery Block. 

Generally. it can be seen in this design that the communications consist of a number of 
signal and overwriting buffers, and channel or bounded buffer interactions. During the 
application processing itself, some reference data may be read/written - illustrated by the pool 
interactions. Indeed some timing information is likely within this process itself, and can be 
easily specified using this design method. A simple control loop is shown in Figure 6 
(Simpson 1994a) illustrating this design method. More detail of this is given in (Simpson 
1994a). The choice of whether the interaction should be a signal or a channel is dependant on if 
the writer should (can) be held up by the reader or not. This is important, for example, when 
interaction with processes external to the atomic action (ie at the input and output) so that the 
processes time constraints do not affect the external environment (eg this could be the controlled 
process). Another example for the use of signals is when the parallel processes are exchanging 
data for voting and comparison; here we would not wish the writing process to be held up. In 
certain cases however, it is important that both writer and reader are held up, for example, when 
the input data is read in and the processing cycle of each process is synchronised. 

It appears that by using this new, more general communications model, the system design is 
better suited to the functions required of it by the particular interactions between the parallel 
processes. The richer set of communication primitives in this model enables explicit 
communication structures to be built for specific jobs within the system; in particular in this 
application, specific for the EDRB. These explicit communication structures force the designer 
of the system to consider the most applicable structures for the particular interactions. This 
should produce a design closer to the application, and hopefully a design that is less likely to 
perform incorrectly in the final implementation. The implementation of such a system should 



www.manaraa.com

Communications are everything 47 

also be easier than an equivalent one using just synchronous communications; Using this richer 
set of communication structures, many of the timing problems associated with the purely 
synchronous design disappear allowing a simpler design to be arrived at. Obviously, one hao; to 
pay for such an improvement! Many of the problems associated with the purely synchronous 
design methods are removed by the more "complex" set of mechanisms provided in this new 
communication set. One could consider that the problems have now been removed to the 
hardware mechanisms controlling the communications. This assumes that hardware 
mechanisms are available to implement the different communication structures. It is mentioned 
in (Simpson 1994b) that chip support for these communication primitives is being designed in 
the form of a kernel executive chip and a comms executive chip. 

his lory paramelcn; 

Figure 6 Example Control Process. 

7 CONCLUSIONS 

This paper has proposed that communications are crucial to the design, and implementation of 
fault-tolerant mechanisms applied to parallel processing systems. It has shown how a more 
general model of communications, than that of synchronous communications, can provide better 
mapping from what is required in fault-tolerant mechanisms. This has been illustrated by a 
design of a particular fault-tolerant mechanism, but as with the concept of atomic actions, these 
are general conclusions and should be applied to all fault-tolerant mechanisms designed for 
operation within a parallel environment. 

It has been shown in previous papers that atomic actions should form the basis for fault 
tolerant mechanisms in a parallel environment; this paper shows how they can be designed and 
implemented in a systematic, proper fashion. Work is continuing to improve this design 
method for fault-tolerant mechanisms, as is an implementation of these communication 
structures by others. 

It was proposed in a previous paper (Tyrrell 1994) that a set of design procedures for fault
tolemnt distributed/parallel systems could he as follows: 

design a set of application processes, 



www.manaraa.com

48 Part One Research Papers 

model these using an appropriate state space method, 
identify the safety critical functions of the system, 
identify the atomic actions associated with these safety critical processes, 
place the appropriate framework process(es) around these atomic actions, 
design error detection mechanisms tor the application in question. 

The ideas proposed in this paper would support these design procedures, and enhance them by 
the introduction of a rich set of communication primitives allowing the mappings from one stage 
of the design to the next to be achieved easily and naturally. 

8 ACKNOWLEDGEMENT 

The author would like to thank Geof Carpenter and Hugo Simpson for their ideas on some of 
the work related in this paper. 

9 REFERENCES 

Anderson, T. and Knight, J.C. ( 1983) A framework for software fault tolerance in real-time 
systems. IEEE Transactions on Software Engineering, 9, 12, 355-364. 

Avizienis, A. (1985) The N-version approach to fault-tolerant software, IEEE Transactions on 
Software Engineering, 11, 12, 1491-150 I. 

Carpenter, G.F. and Tyrrell, A.M. ( 19!19) The use ofGMB in the design of robust software for 
distributed systems. Software Engineering Journal, 4, 268-282. 

Elphick, J.R. Patton, R.J. and Tyrrell, A.M. ( 1993) Enhanced Distributed Recovery Blocks: A 
Unified Approach tor the Design of Safety-Critical Distributed Systems. lEE Colloquium on 
Safety Critical Distributed Systems, lEE London, Digest No: 1993/189. 

Jalote, P. and Campbell, R.H. ( 1986) Atomic uctions for fuult tolerance using CSP. IEEE 
Transactions on Softwure Engineering, 12, 1, 59-68. 

Kim, K.H. and Welch, H.O. (1989) Distributed execution of recovery blocks: an approach for 
uniform trel}tment of hardware and software faults in real-time applications. IEEE 
Transactions on Computing, 38, 5, 626-636. 

Lee, P.A. and Anderson, T. ( 1991) Fault Tolerance: Principles and Practice. Springer Verlag. 
Mancini, L. V. and Shrivastavu, S. K. ( 1988) Replicution within atomic actions and 

conversutions: a case study in fault-tolerance duality. FTCS-19, Chicago, 454-461. 
Randell, B. ( 1975) System Structure for Software Fm•lt Tolerance. IEEE Transactions on 

Software Engineering, 1, 220-232. 
Scott, R.K. Gault, J.W. and McAllister, D. F. ( 1987) Fault-tolerant software reliability 

modelling. IEEE Transactions on Software Engineering, 13, 5, 583-592. 
Simpson, H.R. ( 1994a) Temporal Aspects of Real-Time System Design. lEE Colloquium on 

Methods and Techniques for Real-Time System Development, lEE Press. 
Simpson, H.R. (1994b) Architecture for Computer Bused Systems. Proceedings of the 1994 

Tutorial und Workshop on Systems Engineering of Computer-Based Systems, Stockholm, 
70-82. 

Tyrrell, A.M. and Holding, D.J. ( 1986) Design of reliable softwure in distributed systems 
using the conversution scheme. IEEE Transactions on Software Engineering, 12, 7, 921-
928. 

Tyrrell, A.M. ( 1994) The Design of Fault Tolerant, High-Performance Control Systems. lEE 
Colloquium on High-Pcrfonnunce Computing for Advanced Control, lEE London, Digest 
No: 1994/241. 

Tyrrell, A.M. and Carpenter, G.F. ( 1995) CSP Methods for Identifying Atomic Actions in the 
Design of Fault Tolerant Concurrent Systems. IEEE Transuctions on Software Engineering, 
21, 7 629-639. 



www.manaraa.com

Communications are everything 49 

10 BIOGRAPHY 

Dr Tyrrell received a 1st class honours degree in 1982 and a PhD in 1985, both in Electrical and 
Electronic Engineering. He joined the Electronics Departmental York University in April 1990, 
and was promoted to Senior Lecturer in 199.5. Previous to that he was a Senior Lecturer at 
Coventry Polytechnic. Between August 1987 and August 1988 he was visiting research fellow 
at Ecole Polytechnic Lausanne Switzerland. His main research interests are in the design of 
parallel systems, fault tolerant design, software for distrihuted systems, simulation using 
parallel computers and real-time systems. In the last live years he has puhlished over 60 papers 
in these areas, and has attracted funds in excess of £500,000. 



www.manaraa.com

5 
Designing Distributed Multimedia Systems 
using PARSE 

A.Y. Liu* T.S. Chan** I. Gorton*** 

CaST Lab, School of Computer Science and Engineering,* 
University of New South Wales, Kensington, NSW 2052, Australia 
tel: +61 -2 385 4019,fax: +61 -2 385 5995 
contact email: annaliu@cse.unsw.edu.au 

Division of Radio Physics, CSIRO, Sydney, Australia** 
contact email: tchan@ rp. csiro.au, 

Division of Information Technology, CSIRO, Sydney, Australia*** 
contact email: ian.gorton@dit.csiro.au 

Abstract 
With recent vast improvements in computer hardware, in particular, the processing capacity of 
multimedia database servers, and high performance of networks, distributed multimedia 
applications are becoming a reality. This paper presents an object-based approach to the design 
of distributed multimedia software. In particular, the PARSE methodology for designing 
parallel and distributed systems is employed. Justification of the object-based approach is 
given, and an overview of the PARSE process graph notation is presented. A case-study of a 
video-on-demand application is then presented, and a mapping from the design to an 
implementation based on Windows NT is described. 

Keywords 
Distributed system design, multimedia systems, parallel software engineering, PARSE 

1 INTRODUCTION 

Advances in computer and media technology have enabled the development of high 
performance multimedia workstations and servers (Jadav.l995), (Taylor.l995). In addition to 
processing traditional computer data, these workstations are designed to integrate processing 
of other media types, such as video, image, voice and sound. On another level, the emergence 
of high-speed, broadband networks such as B-ISON (Broadband Integrated Services Digital 
Network) (Minzer.l989) have accelerated the development of highly interactive distributed 



www.manaraa.com

Designing distributed multimedia systems using PARSE 51 

multimedia systems (Furht.l994). These systems are designed to transport high bandwidth 
multimedia information across the network, while supporting real-time interactive interfaces. 

Applications developed using multimedia technology can benefit significantly from the rich 
expressive graphical presentation, with the potential to incorporate distributed and 
collaborative processing. Examples of such applications are interactive video conferencing 
systems, video-on-demand systems, computer-aided collaborative design and multimedia 
electronic shopping systems. It is anticipated that the proliferation of multimedia applications 
development will continue to gain momentum and acceptance just as graphical user interface 
has replaced traditional command prompt interface. Consequently, there is an increasing need 
for the development of a software engineering approach to facilitate the modelling and design 
of a potentially complex multimedia system (Gibbs.l995). 

This paper investigates the use of a concurrent. object-based modelling design technique for 
developing multimedia systems. In particular, the paper describes the use of the PARSE 
(Parallel Software Engineering) software engineering methodology (Gorton.l995). Issues 
relating to the modelling of distributed multimedia systems are described in section 2. Section 
3 gives a brief overview of the PARSE notations, with an emphasis on tthe features of PARSE 
that supports distributed multimedia system designs. Section 4 and 5 presents a case study on 
the design of a video-on-demand (VOD) multimedia application using PARSE, and a mapping 
to the WIN32 Application Programming Interface (API) is given in section 6. 

2 MODELLING DISTRIBUTED MULTIMEDIA SYSTEMS 

The development of software for distributed multimedia applications presents several 
challenging requirements. These range from the need to transmit and synchronise multiple 
media types, through to support for distributed interactive processing with real-time 
performance parameters. The development process is further complicated by the need of 
applications to support heterogeneous hardware platforms, as well as different device drivers 
and operating systems. Specifically, a software engineering methodology for distributed 
multimedia systems should support the following key design aspects: 

Synchronisation: In multimedia applications, the synchronisation between different types of 
medium is important. For example, it is crucial to control and synchronise the broadcast of 
video and audio components of a video segment. In addition, as different components may 
operate at different speeds, control messages are often sent to several processes in order to 
synchronise the total system activity. Any design methodology for distributed multimedia 
software must cater for the explicit design of synchronisation mechanisms. 

Dynamic Process and Communication Path Creation: The client-server paradigm can often 
be found in distributed multimedia applications, where the server process objects spawn extra 
helper processes to carry out the work as requested by clients. The software design method 
should be able to capture features such as the dynamic creation and deletion of processes and 
communication paths. 

Strong Modularity: Modularity is essential in distributed multimedia systems design. 
Encapsulated software objects representing multimedia system components reduce the 
development effort, shielding the programmer from the complex details of programming and 
operating media hardware. Essentially, the object model contains all the necessary functions 
for the operation of the media device, making direct programming unnecessary (Friesen.l995). 



www.manaraa.com

52 Part One Research Papers 

This also promotes portability of code, as objects can be reimplemented for different platforms 
while maintaining a constant functional interface (see Figure 1). 

Media Object 

Member Functions 

Media Hardware 

Figure 1 Media Object Interface. 

3 OVERVIEW OF PARSE 

PARSE (PARallel Software Engineering) is an object-based software engineering 
methodology that facilitates the design of reliable and reusable parallel and distributed 
systems. Software design in PARSE is centered around a process graph notation. The notation 
allows the partitioning and synchronisation of the software to be expressed in a graphical 
manner. Designs represented as process graphs are simple and concise, and can be 
progressively refined to capture all the structural and dynamic properties of a design. The three 
basic features of PARSE process graphs are: explicit classification of process objects using a 
small set of system supplied general classes; interaction between process objects is done via 
message passing on typed communication paths; and the unique feature of path constructors, 
used to specify relationships between process object communication paths. The basic design 
components of PARSE are shown in Figure 2, and for a full description of the individual 
components, please refer to (Gorton.l995). 

The basic PARSE process graph notation cannot handle the design of distributed systems 
which incorporate the dynamic creation and deletion of processes and of communication paths. 
Hence, the dynamic reconfiguration of systems cannot easily be captured in the design. In a 
typical multimedia application, the provision of these facilities is vitally important. The 
Extended-PARSE (Ext-PARSE) (Liu.l996) process graph notation (Figure 2) is designed to 
supplement the basic PARSE process graph notation for this purpose. 

Process objects may be created and deleted dynamically. New process objects may 
enter/exit the system at run time. This should not affect the execution of other processes. 
Function servers and control process objects may create and delete dynamic process objects by 
invoking create and or delete signals. They are shown via the twisted arrow notation. There are 
two rules of usage: the process object at the invoked end of a creation/deletion arrow must be 
of dynamic type; and the process object at the invoking end of a creation/deletion arrow must 
be an active process object (this means data server is excluded). There are also three ways that 
dynamic process objects may exit from the system: assassination, where an active process 
object kills a dynamic process object; suicide, where a thread terminates its own execution; 
and aging, which is the default termination mode. The created thread dies from aging when it 



www.manaraa.com

Designing distributed multimedia systems using PARSE 53 

completes its work. This occurs naturally, hence the term aging. The notation caters for all 
three possible ways of termination, and leaves the design decision for the software engineer. 

Basic PARSE Extended PARSE 

Dynamic Process Dynamic Transactional 
Process Objects Communication Path Process Creation/ Process Communication Paths Constructor Objects Deletion Termination Paths 

0 
Modes 

-?--
.. .. 

c:::J 
·······>····-... .. • 

Function 
synchronous 

Dynamic create delete synchronous non- ~0 Servers deterministic Function ~ 

~ Server ··•·>····· 
D 

assassination 

asynchronous ~- ·_ ·_ ·_ ·_ ·_ ·_ ·_ ·_ ·_ ·_ -_1 asynchronous 

u::::2J delete .. ······-. Data 
~ • Server ~ deterministic Dynamic ... ···<--::·>··· 

Data suicide 
Server 

8 
synchronous synchronous 
bidirectional - r:::·:.·.·.·.·.·.:; 

bidirectional . ·· ····- ... 

~ concurrent 
.. ········ ··>··+:-::·: Control 

• .......... 

Dynamic aging 

broadcast Control broadcast 

Figure 2 Summary of the PARSE Process Graph Notation. 

Communication paths going into and or coming out from dynamic process objects are dynamic 
in nature. These communication paths are set up when the associated process objects are 
created, and are destroyed when process objects terminate. 

Dynamic process objects are often replicated. Each replicated instance has the same internal 
behaviour. However, not all instances of the process are created simultaneously: different 
instances may be created and terminated at different times. The series of numbers enclosed by 
square brackets [O .. n] denotes the range of the number of instances of the object that may be 
present in the system at any one time. The symbol 'n' may be replaced by a constant integer, or 
by default, is the maximum number of thread instances a process may have as defined by the 
underlying system. 

In Figure 3a, there is (at any time) a maximum of one communication path between the two 
dynamic process objects. However, this is not always the case. By default, a communication 
path going into or coming out from a dynamic process object is replicated if there are multiple 
instances of the process. 

By default, all associated processes are fully connected by communication paths. Specific 
path restriction notations can also be used to override default behaviours (see Figure 3b). 

Transactional Communication Path: Software designers can explicitly show that the 
communication between two processes is of a transactional type by using dotted arcs (see 
Figure 2 Extended PARSE). In many software systems, such as database applications, 
transactional communication paths are often used. These are different to the ordinary 



www.manaraa.com

54 Part One Research Papers 

communication paths in the sense that they are set up only when they are needed to transfer 
messages. As soon as the transfer is complete, the path is no longer valid. Hence, the life span 
of a communication path is not dependent on the life spans of the processes using it, but is 
dictated by the activity of transferring the message. 

data 
/ [0 .. 2] ''....-----+------.'' [0 .. 2) '\ 
', sender , 1 ', ... receive!,' 

_____ data: from sender[i] to receiver[il- __ 
,-- [0 .. 2] ', for~= 1..2 ,-- [0 .. 2] --_ 
'.... sender , ' ', receiver, 1 

v 
data: from sender[ I] 

•:, sender[l]) to ,=eiver[ I] ' ' ~ receiver[ I 1; 

_- - - - - , data: from sender[2] 

•:, sender[2]) to r;eiver[2] ': receiver[ I): 

Figure3a Figure3b 
Figure 3a Replication Of Dynamic Communication Path. 
Figure 3b Path Restriction. 

The period of validity of the communication path depends on the associated process 
internals. This can be explicitly defined using the behavioural specification language 
[Gorton95]. 

PARSE uses hierarchical decomposition to handle large designs. Further, in typical client
server systems, it is often desirable for processes to spawn new helper processes to service 
multiple clients' requests. Multithreaded objects provide abstraction for the low level process 
creation/deletion activities. The default structure (expressed within the roundangle) is as 
shown in Figure 4. 

Figure 4 Default Behaviour Of A Multithreaded Object. 

A designer may override this default structure and or behaviour by providing the 
decomposition of the multithreaded object, thus the multithreaded object simply provides an 
abstraction at the higher level of design, for the low level parallelism. 



www.manaraa.com

Designing distributed multimedia systems using PARSE 55 

4 CASE STUDY: VIDEO-ON-DEMAND 

Previous work with PARSE has focused on the design and development of closely-coupled 
parallel systems (Gorton.l994). In this paper, we wish to illustrate the use of PARSE to design 
loose-coupled distributed systems such as multimedia applications. 

This section describes a case study on the use of PARSE for the design of a distributed 
video-on-demand (VOD) multimedia application•. In addition to providing VCR-like 
functions for controlled playback, the application is designed to support interactive non-linear 
access to video footage. Compressed videos are manually segmented, and a descriptor file is 
created for each significant segment of the file. Each descriptor consists of several control 
parameters and pointers to the start and end of the associated video segment. This control 
information is loaded into the main memory at start-up time, so as to facilitate high-speed 
retrieval of the requested video segments. The video server is designed to support multiple 
concurrent connections. For each new connection requested by a remote client, the parent 
server process creates a child process to handle the newly requested service. 

4.1 PARSE Process Graph Design For VOD 

The top-level PARSE design diagram shows the client-server structure of the video-on
demand application (see Figure 5). 

,.........,..._~ -~/J,~-disk 

.' [O . .nl ... ,~I . 
~~ \ video_clienl ! " .. dicnt_ 

~.LJmeda-_--1:1-7=.---~-~--._...:..._----rl ~ -
Figure 5 Top Level Diagram. 

The video client is modelled as a dynamic process object. The notation [O .. n] denotes that 
there may be 0 or more active clients at any one time. Here, n is unspecified, and hence only 
limited by system resources. 
A video_client is created dynamically by the external client__generator2, which represents the 
external interface of the system (here, a video_client is created in response to the user starting 
up the application). Upon creation, the client software sends the initial connection_request 
message via the 'transactional' communication path. This prompts the server to initiate a 
connection for the client (for more details, the internal structure of the multithreaded server is 
shown in Figure 6). For each connection service requested by a newly created client, a set of 
connection paths are established for the exchange of control and media information between 
the distributed client and server processes. The server _control connection path is used by the 

I The precise application details are commercial in confidence. 
2 The solid bar represent an 'external entity' in the PARSE notation (Gorton.1995). 



www.manaraa.com

56 Part One Research Papers 

client process to transfer control messages to the server for controlled playback and process 
synchronisation. Similarly, the client_control connection path is used by the server process to 
provide feedback control information to the client. These control paths are specified as 
asynchronous in nature, and of type reliable, which specifies the protocol used on these paths. 
Logical protocol definitions are specified textually using a simple protocol definition 
language: they are omitted from here due to space restrictions. In contrast, the media_data path 
is declared as unreliable, as this can survive information loss, but requires low delay and jitter 
control to support continuous media stream playout at the client. 

// [O .. n) ·· .. 

video_ 
server 

····-............ · 

server_control: client_control: 
from video_server[i] from video_server[i) 
to video_client[i) to video_client(i] 
for i=l..n for i=l..n 

connection_ 
request 

"'1------1······-:::•·· ........... . 

media_ data: 
from video_server[i) 
to video_client[i) 
for i=l..n 

Figure 6 Behaviour of Multithreaded 'Server' Object. 

The communications characteristics specified in PARSE can be mapped directly to the 
appropriate communication Application Programming Interface (API) supported by the 
underlying network. For example, in an A TM network, the use of reliable communication path 
specified in PARSE can be mapped to a communication API based on TCPIIP using AAL5 
adaptation layer (Boudec.l992). Similarly, the use of an unreliable communication path with 
specified delay and jitter parameters for continuous media communication can be mapped 
directly to an API that supports real-time traffic such as AAL I and AAL2 (Boudec.l992). 

The behaviour of the 'multithreaded server' process is decomposed as shown in Figure 6. 
The video_server process object is created dynamically in order to service the video clients' 

requests. This activity is co-ordinated by the main_server control process object. 
Hence, for each instance of the client process, there is a copy of video server to service the 

client's request. That is, for each client[i], a video_server[i] is created, fori= O .. n. The path 
restriction feature (Gorton.l995) in PARSE has been used to specify that the communication 
paths: server _control, client_control, and media_data only exist between corresponding video 
server and client. 

The video server process is further decomposed in Figure 7. 
The server control unit receives control data from the client via the server _control 

communication path. The control information is parsed and the appropriate control actions are 
sent to MJPEG_file_server for processing. Based on the control actions received from the 
control unit, MJPEG_Jile_server retrieves the appropriate video segment from the disk via the 
bi-directional communication path, and sends the media_data to the client across the network. 
In addition, MJPEG_file_server is responsible for flow control synchronisation with the client 
to ensure that the client's media buffer is within the lower and upper buffer mark. This is 



www.manaraa.com

Designing distributed multimedia systems using PARSE 57 

accomplished by having the client process periodically feedback the buffer information and the 
rate in which the media is being played (via client_contro[). This feedback information is 
processed by the file server and the appropriate control actions are invoked to ensure correct 
synchronisation. For example, if server _control_unit detects a progressive increase in the 
client's media buffer such that the buffer's upper threshold has been reached, a control 
message is sent immediately to the MJPEG_Jile_server to reduce the media transmission rate. 

disk 

Video_Server 
r--------------------------------------• 
' ' ' ' : client_control, reliable 
: server_ 1 

l control_unit 

' ' ' ' : 
: 
' ' ' ' ' ' ' ' ' ' 

' ' . servr_control. rehable 

' ' ' ' ' ' ' ' ' ' 
' ' ' media_data, no~-reliable 

' ' ' ' .... -------------------------------------- J 
Figure 7 Video Server. 

Figure 8 shows the decomposed design of the video_client process. 

Video_Ciient 

' ' ' ' ' ---------------------------------------------------------------------_, 
Figure 8 Video Client. 

The user interface function is responsible for the processing of user's input. Based on the 
command received from the user interface function, client_control_unit is responsible for 
invoking the appropriate actions for the local and remote server processes. For example, upon 



www.manaraa.com

58 Part One Research Papers 

receiving a pause command from the user, the control unit issues a control message to the 
local client synchronisation unit to stop processing. Subsequently, a control message is also 
issued to inform the remote server to temporarily cease sending any further media data so as to 
prevent buffer overflow at the client. The client synchronisation control unit 
(client_sync_control) is responsible for synchronous playout of the continuous media data. For 
each block of interleaved audio and video frame, based on the frame's playout rate, the 
synchronisation control unit is responsible to ensure the synchronous play out of the continuous 
media. In addition, the unit is also responsible for the synchronisation between the client and 
server to ensure that proper flow control is enforced. The interleaved audio and video data 
received from the synchronisation control unit is demultiplexed by the MJPEG_Demux 
function unit. The demultiplexed video and audio data unit are sent to the respective 
decompression functions for media decompression and subsequent playout. 

5 SPECIFYING PROCESS OBJECT BEHAVIOUR USING BSL 

The dynamic behaviour of the primitive (lowest-level) process objects is specified using a 
behavioural specification language (BSL). This language contains constructs for describing 
sequential program structures and includes sequences, iterations, selections, and guarded 
selections. Primitive send and receive operations for various kinds of communication path 
types are also included. In addition, dynamic creation, deletion of processes and 
communication paths can be specified. For a full description of the syntax and usage of BSL, 
see (Gorton.l995). 

The specification of all primitive process objects is beyond the scope of this paper. We will 
however demonstrate the use of BSL by providing partial descriptions of the behaviour of two 
primitive process objects taken from Figure 6 and Figure 8. BSL descriptions should fully 
describe the relative order of inputs and outputs for a given process object: internal processing 
of inputs can be left unspecified, at least initially. This gives a skeleton specification of the 
process object's interactions which is sufficient to simulate and verify the system's behaviour 
(Russo.l995). 

connection_ 

~i~::;~s~··············· 
Figure 9 'Main_Server' From Multithreaded 'Server' Object. 

PROCESS MAIN SERVER 
SEQUENCE 

WHILE TRUE 
-- main_server sets up transactional communication path 
setup (connection_request) 

-- take input from asynchronous path Connection_request 
-- i is the instance of the client object, -1 denotes 

untimed conun. 
receive (inpl, i, -1, connection_request) 

--create helper process after receiving 
--Connection_request 



www.manaraa.com

Designing distributed multimedia systems using PARSE 

create (video_server) 
ENDWHILE 

ENDSEQUENCE 
END PROCESS 

59 

The main_server process object has a simple BSL description. It simply waits for a client 
process to connect via the connection_request dynamic path, and creates a video_server 
process object to service further requests. MJPEG_Demu:x specifies that for each input 
message received on the audio+ video path, a corresponding output message is sent to both 
output paths. These completed behavioural descriptions can then be translated into 
programming languages using APis supported by the underlying platform. 

outp2 outpl 
Figure 10 'MJPEG_Demux' From 'Video_Client'. 

PROCESS MJPEG_DEMUX 
SEQUENCE 

WHILE TRUE 
receive (inp1, i, -1, audio+video) 
-- separates the two types of medium 
as-send (outp1, i, -1, video) 
as-send (outp2, i, -1, audio) 

ENDWHILE 
END SEQUENCE 

END PROCESS 

6 IMPLEMENTATIONSUPPORT 

Windows NT has been chosen to be the implementation platform. The Application 
Programming Interface (API) Win32 provides a rich set of function calls that enables the 
development of distributed multimedia systems. Table I gives a summary of Win32 API calls 
that supports the implementation of any Ext-PARSE designs. 
Note: actual Win32 and socket function calls are in italic. 

7 CONCLUSION AND FURTHER WORK 

A number of software design techniques for distributed systems exist. For example: Booch 
(Booch.l991), CODARTS (Gomaa.l993), HOOD (Robinson.l992), MOOD (Lee.l994), and 
PROOF (Yau.l994). However, they do not exhibit the ability to easily capture the dynamic, 
distributed system structures and complex synchronisation requirement frequently occurring in 
multimedia applications. 

This paper has demonstrated the suitability of PARSE for the design of distributed 
multimedia systems. The complete PARSE process graph notation enables the dynamic system 



www.manaraa.com

60 Part One Research Papers 

structure to be captured precisely, and succinctly. Multithreaded process objects, and the 
hierarchical process object structuring promotes a high level of design abstraction. In typical 
client-server systems, there are often multiple instances of the server object created for 
servicing multiple clients' requests. The multithreaded process object in PARSE allows the 
designer to specify this dynamic interaction between client and server easily. The information 
captured in the textual annotations, such as path restriction and dynamic process object 
replication ranges, further aids the eventual implementation. 

Ext-PARSE process graph feature Win NT/Win32 API Equivalent 

Dynamic process objects Processes, threads 

• create dynamic process objects • CreateThread, CreateProcess, CreateRemoteThread . delete dynamic process objects: • thread termination: 
-aging - return from function 
- assassination - TerminateThread 
-suicide - ExitThread 

• data server objects • thread: Thread-Local Storage, shared memory: 
synchronisation objects 

Communication Paths NamedPipes 
• creation • CreateNamedPipe (an instance of a named pipe is always 

deleted when the last handle to the instance of the named pipe 
is closed) 

• synchronous • blocking send, blocking receive, overlapped mode not 
enabled, pipe-specific mode = PIPE WAIT 

• asynchronous • non-blocking send, blocking receive, pipe open mode = 
overlapped, pipe-specific mode = PIPE WAIT 

• bi-directional synchronous • blocking send, blocking receive, pipe open mode = PIPE 
ACCESS DUPLEX 

• broadcast • multiple instances of named pipes, or mailslots 
Network Communication Paths Socket facility provided in winsock.h 

• creation • creating new socket, socket, bind 

• synchronous • reliable path with blocking send, blocking receive, socket_type 
= SOCK_STREAM 

• asynchronous • non-blocking send, blocking receive, for reliable path 
socket_type = SOCK_STREAM, non-reliable path socket_type 
= SOCK_DGRAM 

• bi-directional • sockets are inherently bi-directional 

• broadcast • multiple instances of sockets. In some networks, eg. A TM, 
efficient implementation can be achieved using network 
multicast facilitv. 

Path Constructors Input selection methods 

• unspecified (not used in primitive • no need to consider this in Win NT 
processes) 

• concurrent • independent threads carrying out work separately 

• non-deterministic • NamedPipes non-deterministic by default 

• deterministic • WaitNamedPipe 

Table 1 Mapping between Ext-PARSE and Wm32 

The PARSE graphical design method would seem intuitive to use and easily 
comprehensible. In this project, the lead designer produced a PARSE design for the system in 



www.manaraa.com

Designed distributed multimedia systems using PARSE 61 

a matter of days, with no previous PARSE exposure. We intend to quantitively explore this 
issue further through additional, controlled case studies. 

The verification of designs is the issue that needs to be considered. Currently, static PARSE 
designs can be easily translated into Petri Nets (Gorton.l994 ), and subsequent design 
verification can be carried out automatically. However, this technique can not be used with 
PARSE designs with dynamic properties, since any reachability analysis would lead to an 
infinite state system. It is anticipated that an alternative verification technique would be 
employed. The works of (Birkinshaw.l995) and (Milner.1980) may offer possible solutions. 

References 
Birkinshaw, C.I. and Croll, P.R. (1995) Modelling the Client-Server Behaviour of Parallel Real-Time 

Systems Using Petri Nets, Proc. 28th Ann. Hawaii Int'l Conf System Sciences, Parallel Software 
Engineering Minitrack, Vol.2: Software Technology, IEEE Computer Society Press, Calif., 339-48. 

Booch, G. (1991) Object-oriented Design With Applications. Benjamin/Cummings. 
Boudec, J.Y.L.(l992) The ATM: A Tutorial, Computer Networks and ISDN Systems, Vol.24, 279-309. 
Friesen, J.A., Yang, C.L. and Cline, R.E. (1995) DAVE: A Plug-and-Play Model for Distributed 

Multimedia Application Development, IEEE Parallel and Distributed Technology, Vol.3, No.2, 
Summer, 22-8. 

Furht, B. (1994) Multimedia Systems: An Overview, IEEE Multimedia, Vol.l, No.I, Spring, 37-50. 
Gibbs, S.J. (1995) Multimedia Programming: objects, environments, and frameworks, ACM Press. 
Gomaa, H.(1993) Software Design Methods for Concurrent and Real-Time Systems, Addison-Wesley. 
Gorton, 1., Chan, T.S. and Jelly, I.E. (1994) Engineering high quality parallel software using PARSE, 

in Lecture Notes in Computer Science 854, Proceedings of CONPAR-V APP 94, Linz, Austria, 
September, 381-92, Springer-Verlag. 

Gorton, 1., Gray, J.P. and Jelly, I.E. (1995) Object-based Modelling of Parallel Programs, IEEE 
Parallel and Distributed Technology, Vol.3, No.2, Summer, 52-63. 

Jadav, D. Chaudhary, A. (1995) Designing and Implementing High-Performance Media-on-Demand 
Servers, IEEE Parallel and Distributed Technology, Vol.3, No.2, Summer, 29-39. 

Lee, P.J., Chen, D.J. and Chung, C.G. (1994) An Object-oriented Modelling Approach To System 
Design, Information and Software Technology, Vo1.36, No.1!, 683-94. 

Liu, A. and Gorton, I. (1996) Modelling Dynamic Distributed System Structures in PARSE, to appear 
in 4th Euromicro Workshop on Parallel and Distributed Processing, Braga, Portugal, January. 

Microsoft Corp. (1991) Microsoft Windows Multimedia Programmer's Workbook. 
Milner, R. (1980) A Calculus of Communicating Systems, in Lecture Notes in Computer Science 

Volume 92, Springer-Verlag. 
Minzer, S.E. ( 1989) Broadband ISDN and Asynchronous Transfer Mode (ATM), IEEE 

Communications Magazine, September, 17-24. 
Robinson, P.J. (1992) HOOD, Prentice-Hall, 1992. 
Russo, S., Savy, C., Jelly, I.E. and Collingwood, P.C. (1995) Petri Net Modelling of PARSE Designs, 

Joint Technical Report, Computing Research Centre, Sheffield Hallam University/ Departmento di 
Informatica e Sistemistica, University of Naples. 

Taylor, H., Chin, D. and Knight, S. (1995) The Magic Video-on-Demand Server and Real-Time 
Simulation System, IEEE Parallel and Distributed Technology, Vol.3, No.2, Summer, 40-51. 

Wallace, O.K. (1991) The JPEG Still Picture Compression Standard, Communications of ACM, 
Vol.34, No.4, April, 30-44. 

Yau, S.S. and Bae, D-H. (1994) Object-oriented and Functional Software Design for Distributed Real
time Systems, Computer Communications, Vo1.17, No.lO, October, 691-8. 



www.manaraa.com

6 
Hypersequential Programming 
- A Novel Paradigm for Concurrent Programming -

Naoshi Uchihira, Shinichi Honiden, and Toshibumi Seki 
Systems & Software Engineering Laboratory, Toshiba Corporation 
70, Yanagi-cho, Saiwai-ku, Kawasaki 210, Japan 
Telepkone: +81-44-548-5690, Faz:+Sl-44-520.5855, E-mail: uchi«<ssel. toshiba.co. jp 

Abstract 
This paper proposes hypersequential progmmming which is a novel paradigm for concurrent pro
gramming to ease the difficulty of concurrent programming and make the concurrent program 
highly reliable. The difficulty of concurrent programming is due mainly to its nondeterminism; 
nondeterminism being the purpose of the concurrent program. We classify nondeterminism into 
3 types: intended, harmfu~ and persistent nondetenninism. In traditional concurrent program
ming, a programmer first designs and implements programs so as to maximize concurrency, 
wltich may include the 3 types of nondeterminism. He then tries to detect harmful nondeter
ministic behaviors by testing and debugs them. However, it is actually very hard to remove 
all harmful nondeterministic behavior. On the contrary, in hypersequential programming the 
concurrent program is first serialized to remove all types of nondetenninism, and then the pro
grammer tests !'Lnd debugs it as a sequential program. Finally, it is parallelized by rest.oring 
only intended and persistent nondeterminism. With hypersequential programming, a highly
reliable concurrent program can be developed because the injection of harmful nondeterminism 
is (>recluded. This paper shows the generic concept and a simple embodiment of hypersequential 
programming. 

Keywords 
concurrent programming, nondeterminism, serialization, parallelization, dependence analysis, 
bighly-reliable program, hypersequential progranuning, default sequential principle 

1 INTRODUCTION 

Generally speaking, we find it more difficult to develop concunent programs than we do se
quential programs. In testing and debugging of concurrent programs, the combination of data 
and timing variations causes an explosive increase of behavior complexity and often produces 
unexpected {probably harmful) behaviors. Moreover, concurrent progra.n1s do not always have 
reproducible behavior (McDowell and Helmbold, 1989). 

These difficulties are due mainly to their capricious (i.e., nondeterministic) behaviors. Non
determinism can be classified into the following 3 types. 

• Intended nondeterministic behavior: Nondeterministic behavior which the programmer 
intends to implement. 

• Harmful nondeterministic behavior: Nondeterministic behavior which the programmer 
does not intend to implement and does not expect. 



www.manaraa.com

llypersequennalprogranuning 63 

• Persistent nondeterministic behavior: Nondeterministic behavior which is race-free, 
that is, has no effect on the results. 

In conventional concurrent programming, the programmer tries to detect and remove harmful 
nondeterministic behavior in testing and debugging. However, it is actually very hard to remove 
all harmful behavior by testing. 

This paper proposes a novel programming paradigm which is the reverse of the conventional 
programming and is applicable to actual concurrent programs. In hypersequential programming, 
all types of nondeterminism are removed at first by serialization, whereas only harmful non
determinism is removed in the case of conventional programming. Then the programmer tests 
and debugs the serialized program in the conventional way. Finally, intended and persistent 
nondeterminism is restored by parallelization. While serialization and parallelization should 
be computer-aided, testing and debugging are basically done in the conventional way. Hyper
sequential programming makes concurrent programming as easy as sequential programming 
because testing and debugging are done for serialized programs, and thus high productivity 
and high reliability can be achieved. 

The remainder of the paper is organized as follows. Section 2 explains three types of non
determinism by example, and illustrates a concept of hypersequential progran1ming. Then, we 
introduce a generic procedure of hypersequential programming and fundamental techniques for 
it in Section 3. Section 4 shows a concrete embodiment of hypersequential programming using 
a simple example. Finally, Section 5 mentions related works, and conclusions are presented in 
Section 6. 

2 NEW PARADIGM FOR CONCURRENT PROGRAMMING 

This section explains the concept of hypersequential programming. First, we classify nondeter
minism of concurrent programs into 3 types in detail. Then, we illustrate how hypersequential 
programming differs from conventional concurrent programming with regard to manipulation 
of nondeterminism. 

2.1 Concurrency and Nondeterminism 

Even when a concurrent program runs with the same input, its behavior can be different. This 
is nondeterminism. Nondeterministic behaviors can be classified into three types: intended, 
harmfu~ persistent (Uchihira and Honiden 1995). We explain them using a simple example 
shown in Figure 1. The example is a simple Ada-like concurrent program "Seat Booking", 
where two processes read/write a shared memory "seat" to reserve one seat. This program has 
the following nondeterministic behavior, which can be classified into 3 types. 

• fit = l1 -+ l2 -+ Ia -+ l4 -+ Is -+ m1 -+ m2 -+ ms 
Result: status1 =OK, seat= OCCUPIED,status2 = NG. 

• 92 = m1 -+ m2 -+ ms -+ m4 -+ ms -+ l1 -+ l2 -+ Is 
Result: status1 = NG,seat = OCCUPIED,status2 =OK. 

• 93 = l1 -+ m1 -+ 12 -+ m2 -+ 13 -+ m3 -+ 14 -+ m4 -+ ls -+ ms 
Result: status1 = 01(, seat = OCCUPIED, status2 = OK. 

• 94 = l1 -+ m1 -+ 12 -+ 13 -+14 -+ Is -+ m 2 -+ m5 

Result: status1 = 01(, seat = OCCUPIED, status2 = NG. 
• 9s = m1 -+ l1 -+ 12 -+ 13 -+ 14 -+ 15 -+ m2 -+ ms 

Result: status1 =OJ(, seat= OCCUPIED,status2 = NG . . ........... . 



www.manaraa.com

64 Part One Research Papers 

P1 11: status! := NG ; 
read 

ml: status2 := NG ; P2 
12: if seat.read = FREE then ~ r- m2: if seat.read = FREE then 
13: seat.write(OCCUPIED) ; m3: seat.write(OCCUPIED); 
14: status! := OK ; m4: status2 := OK; 

end if; end if; 
15: terminate ; m5: terminate; 

1 write wrHe 1 
I statusll I (Initially, :::: := FREE) I I status21 

Figure 1 An example of a concurrent program 

Intended nondeterminism The nondeterministic behaviors 81 and 82 derive different results: 
P1 can book the seat (status 1 =OK) in 0., but cannot (status 1 = NG) in 82. However both 
are correct {intended behaviors). 

Harmful nondeterminism The nondeterministic behavior Oa derives an incorrect result (double 
hooking). Thus, this program has harmful nondeterminism. 

Persistent nondeterminism The nondeterministic behaviors 84 and Os have the same result 
because l1 {write in statusi) and m1 (write in status2) are actions independent of each other. 
We call such a. situation persistent. 

Note that all intended nondeterministic behavior must be implemented, while persistent non
detenninistic behavior is permitted but not necessarily implemented. Harmful nondeterministic 
behavior is wrongly injected when the programmer is implementing intended and persistent be
haviors. 

2.2 Paradigm Shift 

Old Paradigm 
In our ohservation of conventional concurrent program development, a programmer first tries 
to design and implement processes so as to maximize concurrency, which may include the 3 
types of nondetenninism ( O., 82, Oa, 84 , Os, ... ). He then tries to detect harmful nondeterministic 
behaviors (83) in testing and debugs them by partially serializing the critical sections which 
interfere with each other using synchronization mechanisms (e.g., semaphore, rendezvous). Bugs 
due to harmful nondeterministic behavior often account for a. considerable part of all timing 
bugs. In conventional concurrent programming, it is very difficult and requires heavy load to 
remove all harmful nondeterministic behavior for large-scale programs. Moreover, there is no 
assurance that all harmful behaviors are removed, and some bugs still remain more often than 
not. 

This situation is illustrated in Figure 2. The dense tree denotes a concurrent program which 
has a lot of bugs (i.e., harmful behaviors). In conventional concurrent programming, bugs are 
removed one by one during testing and debugging. However, since the tree is dense, it is very 
hard to find all bugs, and some bugs remain. 

New Paradigm 
A novel programming paradigm, called hypersequential progmmming, is the reverse of the old 
paradigm. In a nutshell, the hypersequential programming consists of serialization and par
allelization. In hypersequential programming the programmer first serializes the concurrent 
program to remove all types of nondetenninism, and then tests and debugs it as a sequential 
program. Finally, he parallelizes it by introducing only intended and persistent nondetennin-



www.manaraa.com

Hypersequential programming 

Bugs 

A: Concurrent Program 

Testing and 
Debugging 

B: Concurrent Program 

Figure 2 Conventional Concurrent Programming (Old Paradigm) 

65 

Ism. We claim that hypersequential programming promotes a paradigm shift in concurrent 
programming. 

In the case of the example {Figure 1 ), the program can be serialized by introducing a process 
priority ( P1 > P2). The serialized program has only one behavior 8~, which can be tested as easy 
as for a sequential program. Then, another intended behavior 82 is appended to the program. 
Finally, persistent nondeterministic behaviors 84 , 85, ... are restored by automatic parallelization. 

This new paradigm is illustrated in Figure 3. After serializing the concurrent program rep
resented by a dense tree A, only the trunk of the tree remains. This bare tree B illustrates 
the program stripped of all types of nondeterministic behaviors. It is easy to remove bugs from 
the bare tree as compared with the original dense tree, which implies that a lot of bugs {i.e., 
harmful nondeterministic behaviors) are removed together with serialization and further, the 
serialized program can be tested and debugged as easily as a sequential one for remaining bugs. 
However, this bare tree cannot fulfill the original requirements. It should be restored to its orig
inal dense condition. First, intended nondeterministic behaviors are explicitly introduced by 
the programmer. This program (we call it hypersequential program C) can fulfill the functional 
requirements but lacks the parallel speedup; thus the tree looks ill-formed. Then, persistent 
nondeterministic behaviors are restored. This introduction can be automatically done by using 
parallelization techniques. The programmer finally gets a new concurrent program D which 
may be slightly different from the original dense tree A but has no bugs. 

Bug 

Serialization 
and Testing 

A: Concurrent Program Debugging 

~ 
~ Parallelization 

D: Concurrent Program 

6: Sequential Program 

D I01roductiOO a• 
In! ended 
Nondelerm•nasm 

C: Hypersequential 
Program 

Figure 3 Hypersequential programming (New Paradigm) 



www.manaraa.com

66 Part One Research Papers 

3 HYPERSEQUENTIAL PROGRAMMING 

Hypersequential programming consists of the following five steps. 

Step 1: Modeling and Coding Model the target system as it is, using concurrency and 
nondeterminism naturally. Then code it with a concurrent programming language. 

Step 2: Serialization (Projection) Serialize the concurrent program to remove all types of 
nondeterminism. The generated program can be viewed as a projection of the concurrent 
program onto a sequential program, which we call a hypersequential progmm *. 

Step 3: Testing and Debugging 
Test and debug the hypersequential program. Since the program is serialized, testing and 
debugging are as easy as with a sequential one. 

Step 4: Introduction of Intended Nondeterminism 
Introduce intended nondeterministic behaviors into the hypersequential program. After each 
introduction, the program should be tested again for added behaviors. 

Step 5: Parallelization (Restoration) 
Parallelize the program automatically by permitting persistent nondeterministic behaviors. 
This parallelization signifies the restoration of concurrency. 

In a nutshell, a concurrent program is first projected into a sequential dimension which facili
tates the programmer's job, and then the program is restored again into concurrent dimension. 
Each step is explained in detail in the following sections. 

3.1 Serialization 

The target concurrent program is serialized in the meta-level control and converted into a 
hypersequential program. There are several methods of the meta-level control for serialization 
as follows. 

• Serialization based on global priorities: By introducing global priorities among pro
cesses, methods, or program sections, a concurrent program becomes deterministic for the 
same inputs. Note that the global priority control assumes a virtual single CPU environ
ment; it is impractical to implement global control (i.e., global ordering of events) actually 
for parallel and distributed environments. 

• Serialization based on event histories: The execution of a concurrent program can be 
recorded as an event history. A concurrent program can be executed deterministically under 
the control of the event history. 

• Serialization based on scenarios: Instead of event histories, the programmer can specify 
execution order among program sections by giving a scenario. 

Serialization techniques have been developed for debugging concurrent programs in order to 
solve the reproducibility problem (Bernstein and So, 1991). However, serialization information 
is used only for testing and debugging in these works, while serialization information {i.e., 
default execution order explained in 3.2) is also used for pa.rallelization in hypersequential 
programming. 

*A hypPrsequentialprogram is a program which is serialized at the meta-control level and preserves the topology 
of t.hr original concurrent progt-am. After introducing intended nondeterminism in Step 4, the hypersequential 
program may have some partial concurrency. 



www.manaraa.com

Hypersequential programming 67 

3.2 Hypersequential Program 

A hypersequential program is composed of section information, section graph, program depen
dence gr·aph, and serialization information. 

• section information: The original program (source code) is divided into program sections. 
A program section is a segment of a parallel program that is coded to be executed by one pro
cess. A program section may be a basic block which has no branching and synchronization 
except its start and end, and can be executed deterministically and be automatically ex
tracted. The programmer can also specify a program section explicitly using some landmark 
point (we call it section point) as delimiter. In this case, program section may consist of sev
eral basic blocks and include some branching and synchronization, where process switching 
is allowed only at section points and prohibited during execution of the section. 

• section graph: A section graph represents a topological control structure of the original 
program, where nodes correspond to program sections. 

• program dependence graph: A program dependence graph (Ferrante, et a!, 1987) rep
resents both control dependence and data dependence between program sections in a single 
graph. 

• serialization information: Serialization information specifies execution order among pro
gram sections. This execution order consists of two types of order: a priori execution order 
defined in the original program and a posteriori execution order given by serialization. The 
latter order is called default execution order which should be preserved as far as paralleliza
tiou steps do not remove it explicitly. This execution order may be total order just after 
seriali11ation, but will change to partial order after pa.rallelization steps. 

3.3 Introduction of Intended Nondeterminism 

Introduction of intended nondeterminism is a new and important step which does not exist in 
the conventional programming. There are several methods to introduce intended nondetermin
ism. 

• Removing default execution orders: The programmer can remove some default ex
ecution orders of the hypersequential program which generate intended nondeterministic 
behaviors. In other words, total ordering of sections is relaxed into partial ordering. Figure 4 
illustrates a simple example of several removing default execution orders. Note that an a. 
priori execution order cannot be removed. 

• Enumerating essential scenarios: The programmer enumerates all essential scenarios, 
which correspond to test cases in conventional programming. The essential scenarios should 
be representative of all intended behaviors. A set of intended behaviors can be restored from 
these scenarios by parallelization. 

3.4 Parallelization 

Paralleliza.tion techniques have been extensively studied for compiler optimization for super
computers (Zima and Chapman, 1990). In hypersequential programming, these parallelization 
techniques are used to detect persistent nondeterministic behaviors and restore them. This par
allelization should preserve the original semantics, that. is, it must not generate nondeterministic 
behavior which can produce results different from the original one. 



www.manaraa.com

68 

Section 

Remove 

A Priori 
··Execution 

Order 

Part One Research Papers 

Remaining 
Default 
Execution 
Order 

Default 
Executio 
Order ..... 

\ 
Remove 

Remove 

Figure 4 Removing Default Execution Orders 

Concretely, a hypersequential program is parallelized as follows. First, precedence constraints 
between sections are automatically extracted from the dependence graph and the serialization 
information. If two sections have no precedence constraints, they can be parallelized. Then, 
default execution order between sections in the serialization information can be removed if 
they have no precedence constraints. Finally, a concurrent program is generated, where the 
remaining default execution order in the serialization information is preserved by inserting 
synchronization codes to implement it. t The resulting program involves only intended and 
persistent nondeterministic behaviors. 

We want to emphasize that some of initial default execution orders by serialization still re
main a.~ far as they are not explicitly removed by introduction of intended nondeterminism or 
paralleli~ation. These remaining default orders preclude the injection of harmfulnondetennin
ism. We call it the default sequential principle. 

4 SIMPLE EMBODIMENT 

Since hypersequential programming is a rather conceptual paradigm, there are a variety of 
concrete procedures based on the concept. This section shows a simple embodiment of hyper
sequential programming using Petri nets. 

4.1 Simple Example 

We now explain hypersequential programming by a simple example. The target concurrent 
program consists of two processes P1, P2 on different processors, and two shared memories Ma 
and Mb. Although this program has no branch and loop, it can demonstrate essential features 
of hypersequential programming. 

Step 1-1: Modeling and coding a target program 
The target concurrent program P = PdiP2 is described as in Figure 5. 

Step 2-1: Setting program sections 
In this case, assume that each instruction forms one section. To simplify the description, an 
instruction code is itself used as a section ID. 

lThP remaining default execution order can be also implemented by run-time contml instead of inserting syn· 
chronizat.ion eodPs into the program itself. 



www.manaraa.com

Hypersequential programming 69 

Pl: P2: 
begin begin 
in it! I• Initialize Memory Ma •I init2 I• Initialize Memory Mb •I 
read! I• Read Data from Memory Hb •I read2 I• Read Data from Memory Ma •I 
uite1 ; I• Write Data in Memory Ma •I write2 ; I• Write Data in Memory Hb •I 
end end 

Be careful! A1a is accessed by init, read2 , write1, and Afb is accessed by init2 , read1, write2• 

Figure 5 Target Concurrent Program P = P1IIP2 (Source Code) 

Step 2-2: Serializing the concurrent program 
The concurrent program Pis serialized by introducing a process priority P1 > P2 which means 
P1 is executed with the higher priority than Pz. In this case, the execution order of sections is 
represented as follows. 

init1 --> read1 --> write1 -> init2 --> readz --> writez 

After serialization, the hypersequential program H S P is represented as shown in Figure 6, 
which consists of section information, section graph, program dependence graph and serialization 
information. The serialization information represents the above execution order of sections using 
Petri nets. 

(1) Section Information (4) Serialization Information 

Section 10 Source Code 
START 

init1 inH1 
reacl1 read1 
write1 write1 

(3) Dependence Graph 

init2 init2 
reacl2 read2 
wrile2 write2 

(2) Section Graph 

P1 P2 

- Control Dependence 

--··-+ Data Dependence 
P1 P2 

Figure 6 Hypersequential Program H S P 

Step 3: Testing and debugging hypersequential program 
The hypersequential program HSP is executed and tested by the programmer. If bugs are 
detected, the source code of sections is corrected. If a bug is related to the program structure, 
the original concurrent program is modified and serialized again. In this case, a bug such that 
read1 accesses Mb before Mb is initialized is detected. Then the programmer debugs it by 
inserting synchronization commands (send, wait). The modified concurrent program is shown 



www.manaraa.com

70 Part One Research Papers 

in Figure 7, where read1 accesses Mh after Mb is initialized. This program should he serialized 
and tested again. 

Pl: P2: 
begin begin 
initl I• Initialize Memory Ma •I init2 I• Initialize Meaory Mb •I 
wait(l) I• Synchronization •I send(l) I• Synchronization •I 
readl ; I• Read Data froa Memory Mb •I read2 ; I• Read Data from Meaory Ma •I 
vritel I• Write Data in Memory Ma •I vrite2 I• Write Data in Meaory Mb •I 
end end 

Figure 7 Modified Concurrent Program (Source Code) 

Step 4-1: Introduction of intended nondeterminism 
The Petri net representing the serialization information is displayed. The programmer intro
duces intended nondeterminism explicitly by removing default execution orders represented by 
arrows of Petri nets. In this case, a default execution order between write1 8Jid reafk is removed 
(Figure 8{a)). 

START 

(a) lntroduclion 
ollntanded 
NondeiBnninism 

Remove 

Figure 8 Introduction of Intended Nondeterminism 

Step 4-2: Testing and debugging hypersequential program 
The hypersequential program into which nondeterminism is introduced is executed and tested 
again. In this case, the program has two nondeterministic behaviors. 

• init1-+ inita--+ send(l)-+ wait(l)-+ read1 -+ write1 -+ read2-+ write2, or 
• init1 -+ inita-+ send(l)-+ wait(l)-+ read1 -+ read2-+ write1 -+ write2. 



www.manaraa.com

Hypersequential programming 71 

If bugs are detected, the program should be corrected. In this case, these two behaviors are 
intended ones and no bugs are detected. 

Step 5-l: Automatic parallelization 
Precedence constraints among program sections can be automatically derived by analyzing 
the serialization information and the program dependence graph, especially data dependence 
among sections. Default execution orders with some precedence constraints should be preserved 
in parallelization because the execution result may change depending on the execution order of 
sections having data dependence. In this case, there are the following precedence constraints: 
init1 --> read2, init2 --> read~, read1 --> write2. For example, a value read by the process P1 in 
read1 is influenced by whether write2 of the process P2 occurs before or after read1• Therefore, 
the default execution order read1 -+ write2 in the serialization information should be kept in 
parallelization. Sections having no precedence constraints can be executed concurrently, and can 
be parallelized. For example, since two sections read1 and rea~ have no precedence constraint, 
they can be parallelized, i.e., the default execution order read1 -+ rea~ is removed. 

This parallelization can be done automatically by applying rules shown in Figure 9 to trans
form the target Petri net. Figure 8(b) shows a parallelized Petri net after rule application. 

-Rule 1 

Patallellzation 
Rule3 

¢ 
wt.n.:::12W .... ._ ·--tc12·>1C23. 

-Rulo4 

¢ __ ..., 
«:13hlve ............ -ac 22 ·> x13. 

Figure 9 Rules for Parallelization 

Step 5-2: Generation of Concurrent Program 
The source code of the final concurrent program is generated from the hypersequential program 
after parallelization, where the remaining default execution order should be implemented. In this 
case, synchronization instructions (send and wait) are em bedded in the source code for realizing 
the default execution order; init1 -+ read2 and read1 -+ write2. The generated concurrent 
program is shown in Figure 10. 

4.2 Treatment of Branches and Loops 

Ordinary programs have usually branches and loops. This section considers briefly treatment 
of branches and loops in hypersequential programming. 



www.manaraa.com

72 

Pl: 
begin 
initl; 
send(2); 
wait(l); 
readl; 
send(3); 
writel; 
end 

Part One 

I• Initialize Memory Ma •I 
I• synchronization •I 
I• synchronization •I 
I• Read Data from Memory Mb •I 
I• synchronization •I 
I• Write Data in Memory Ma •I 

Research Papers 

P2: 
begin 
init2; 
send(l); 
wait(2); 
read2; 
wait(3); 
write2; 
end 

I• Initialize Memory Mb •I 
I• synchronization •I 
I• synchronization •I 
I• Read Data from Memory Ka •I 
I• synchronization •I 
I• Write Data in Memory Mb •I 

Figure 10 Generated Concurrent Program (Source Code) 

Steps concerning serialization, testing and debugging, and introduction of intended nonde
terminism are done in the same way. Only the parallelization step requires additional consider
ation concerning branches and loops. In general, this parallelization has been well investigated 
and several techniques are available. In Petri-net-based parallelization, we use Petri net fold
ing/unfolding techniques for branching. For example, the rule5-8 (Figure 11) shows parallelizing 
program fragments by folding/unfolding nets. With regard to loops, we basically adopt a hi
erarchical pa.rallelization approach (Girkar and Polychronopoulos, 1992), in which loops are 
treated as single hierarchical sections and a program is represented as an acyclic section graph 
in each hierarchical level. Parallelization is done for each hierarchical level. Furthermore, loop 
unwinding rules are applied to promote parallelization effectively. The rule9 (Figure 11) is one 
of the loop unwinding rules. 

~a·" ... 
Wllan sc2 and 
sc3haveno 

precedenco "' canotrajnts. 

Parallolzalion 
Rulo8 

Parallelization 
RuleS 

WhaniC11,1C12 
llldoc21.oc:22 
-nop-.:o -

Figure 11 Rules for Parallelization (Branch and Loop) 

5 RELATED WORKS 

When developing concurrent programs, it is useful to test and debug them after serializing 
them and deleting their nondetenninism. For example, we usually test and debug concurrent 
programs in a single CPU environment acting as a pseudo-multi-CPU environment before doing 
so in an actual multi-CPU environment. Bernstein and So (1991) systematize this debugging 
know-how. They proposed a debugging method for concurrent programs by stepwise_ serializa.-



www.manaraa.com

Hypersequential programmif!g 73 

tion. With regard to parallelization of sequential programs, a great deal of research has been 
done in the domain of compiler optimizations for parallel computers. Zima and Chapman (1990) 
summarized these techniques. Recently, automatic extraction of task-level parallelism has been 
studied by Girkar and Polychronopoulos (1992,1995). However, there are no reports ofresearch 
into the combination of serialization and parallelization. The reader may ask why not starting 
with sequential program instead of a concurrent one which is serialized afterward. Answer is 
that topology of concurrent program is very natural for many target domains. In hypersequen
tial programming, the topology of the original program is preserved at serialization, and it is 
restored at parallelization. 

The concurrency control of database transactions (Bernstein and Goodman, 1981) is related 
to the techniques of hypersequential programming. The concurrency control is intended to re
move harmful nondeterminism and leave intended and persistent nondeterminism as much as 
possible. However, it is intended only for database transactions, and not for ordinary concur
rent programs. Hypersequential programming is aimed at testing and debugging of ordinary 
concurrent programs which may themselves have synchronization codes. 

6 CONCLUDING REMARKS 

Hypersequential programming can make concurrent programming as easy as sequential pro
gramming, and produce a highly reliable program. This paper shows the basic concept and 
approach of hypersequential programming and a simple embodiment of the concept. We think 
this concept is very general and there may be a lot of embodiments, and it can be applied to wide 
domains of concurrent programming. At the same time, since hypersequential programming is 
still in its infancy, a lot of techniques need to be developed in order to put hypersequential 
programming to practical use. 

Acknowledgments: The concept of hypersequential programming is t.he fruit of a pooling of ideas and dis

cussion in a certain research project being carried out by Toshiba corporation. We would like to thank our 

fellow researchers on the project.: Hideaki Shiotani, Akihiko Ohsuga, Satoshi ltoh, Shinsuke Sawashima, Mit

suru Kakimoto, Yasuo Nagai, Yasuyuki Tahara, Katsuhiko Ueki, Keiichi Handa, and Tamiya Ochiai. We are 

also grateful to Sadakazu Watanabe and l(azuo Matsumura of the Systems & Software Engineering Laboratory, 

Toshiba Corporation, for their support throughout this work. 

REFERENCES 

McDowell, C. E. and Helmbold, D.P. (1989) Debugging Concunent Programs, ACM Computing Sun1eys, Vol.21, 
No.4. 

Uchihira, N. and Honiden, S. (1995) Compositional Adjustment of Concurrent Programs to Satisfy Temporal 
Logic Constraints in MENDELS ZONE, 28th Hawaii International Conference on System Science (HICSS). 

Bernstein, D. and So, K. (1991) Debugging Parallel Programs by Serialization, United States Patent No. 5048018. 
Ferrante, J., Ottenstein, 1\.J., and Warren, J.D. (1987) The Program Dependence Graph and It.s Use in Opti

mization, ACM 71-ans. on Programming Languages and Systems, Vo1.9, No.3. 
Girkar, M. and Polychronopoulos, C.D. (1992) Automatic Extraet.ion of Functional Parallelism from Ordinary 

Programs IEEE 11-ans. Parall. Distrib. Syst., Vol.3, No.2. 
Girkar, M. and Polycluonopoulos, C.D. (1995) Extracting Task-Level Parallelism ACM Trans. Prog. Lang. 

Syst., Vol.l7, No.4. 
Zima, H. and Chapman, B. (1990) Supercompilers for Parallel and Vector Computers, Addison-Wesley. 
Bernstein, F.A. and Goodman, N. (1981) Concurrency Control in Distributed Database Systems, ACM Com

puting Sun1eys, Vo1.13, No.2. 



www.manaraa.com

7 

Efficient composition and automatic 
initialization of arbitrarily structured 
PVM programs 

J.Y. Cotronis 
Dept. of Informatics, University of Athens 
TYPA Builds., Panepistimiopolis, 157 71 Athens, GREECE 
tel.: +30 1 7291885 fax: +30 1 7219 561 e-mail: cotronis@di.uoa.gr 

Abstraet 
There are significant programming and methodological problems when developing PVM 
programs, the process communication structure of which does not form trees but arbitrary 
graphs. We present a design methodology, called Ensemble, and the appropriate PVM 
techniques and tools for the efficient composition of arbitrarily structured PVM programs. In 
Ensemble PVM programs are described by annotated Process Communication Graphs (PCGs) 
and the sequential program components are designed with open communication interfaces. The 
annotated PCGs are interpreted by a universal PVM program Loader which spawns processes 
and sets values to their communication interfaces, thus establishing the program communication 
structure. The program components are reusable without any modification in other PVM 
programs. Annotated PCGs are produced from PVM program scripts. The methodology may 
be applied to any message passing environment by developing specific annotations of the PCG, 
reusable program components and the program loader. 

Keywords 
PVM, program composition, reusable components, annotated process communication graphs 

1 INTRODUCTION 

PVM allows for the most general form of MIMD parallel computation, as programs in PVM 
may possess arbitrary control and dependency structures (Geist et al., 1994). At any point in 
the execution of a PVM program, the processes in existence may have arbitrary relationships 
between each other and any process may communicate and/or synchronize with any other. As 



www.manaraa.com

Efficient composition of PVM programs 75 

with all programming environments there are program categories that are well suited to the 
PVM characteristics, making them easy to implement, and others that are not well suited and are 
much more difficult to implement. Let us overview PVM's fundamental characteristics and 
examine their influence on the design and implementation of programs: 
1. The underlying architecture of PVM is any host system running UNIX and some special 

cases for Massively Parallel architectures, which are viewed as virtual machines. 
2. Hosts may run the PVM console, which allows the user to interactively start, query, modify 

the virtual machine. PVM programs may use the complete host system; distinct programs 
may use the same hosts. 

3. A PVM process is a UNIX process running on a host machine. A process is spawned by its 
parent process. To run a PVM program the user spawns a root process. 

4. Processes are identified by unique integer identifiers, called task identifiers (tid), which are 
generated upon process creation by pvm_spawn. The tid is only known to the spawning 
process and the spawned process may obtain its father's and its own tid by function calls. 

5. Processes may be spawned at specific hosts. If no host is specified PVM chooses where to 
spawn them. There are also some other spawning options. 

6. Process communication and synchronization are of two categories: 1) requiring process tids 
and possibly some message tag identifiers (tags), such as point to point asynchronous 
communication (pvm_send, pvm_recv, etc.) and muticast, sending the same value to a list of 
processes, and 2) requiring group definitions, such as beast, sending the same value to 
processes in a group and barriers, where groups of processes synchronize. 

Programming applications forming, in general, tree-like process communication dependencies, 
where each process communicates only with its parent and its children processes, is easy to 
program in PVM, as for example SPMD and master/slave programs. The parent process 
spawns its children processes and each child process obtains its parent's tid. However, 
programming arbitrarily structured programs, in which the dependency structures of processes 
form arbitrary graphs is not, in general, an easy task in PVM. Establishing graph-like process 
communication dependencies in PVM requires a substantial programming effort is in two 
directions: 
1. Creating the processes according to the parent-child model. 
2. Establishing the full graph communication. Processes have to obtain the tids of the processes 

with which they need to communicate. They already know their children's tids and they 
may easily obtain their parent's tid The programmer has to program processes to obtain the 
tids of the rest of the processes with which it needs to communicate. 

As arbitrary process graph structures are to be established, ad-hoc programming is used which 
depends on the specific communication dependencies of the program in hand. The explicit 
programming of the order of creation of processes and of establishing the communication has 
the following disadvantages: 
1. It is an overhead effort, since it is enforced by PVM (parent-child process creation and 

identification of processes upon their creation) and not by the program specification. 
2. It burdens the design and implementation of programs, since the extra coding makes 

programs more difficult to understand, to debug and to modify. 
3. It limits the reusability and scalability of program components, since components involve 

code which relies on specific dependency structures. 



www.manaraa.com

76 Part One Research Papers 

In this paper we present the Ensemble methodology and its techniques and tools for the efficient 
composition and initialization of arbitrarily structured static PVM programs overcoming the 
above disadvantages. The Ensemble methodology comprises three facets: 

1. The annotated Process Communication Graphs {PCGs). We use general PCGs, as a 
natural structure, representing the processes as nodes and the communication dependencies 
between them as arcs. PCGs have been extensively used in modeling (Andrews, 1991), in 
dynamic analysis and simulation (Pouzet et al., 1994; Schneider and Schaefers, 1993), in 
mapping techniques (Norman and Thanish, 1993), etc. We annotate nodes and arcs of PCGs 
with information a PVM program needs for the creation and communication of its processes. 
We consider the annotated PCGs as interpretable structures specifying the composition of PVM 
programs. The annotated PCGs are produced from program scripts, but may also be produced 
by a graphical tool. 

2. The reusable program components. Processes in PVM are spawned by loading 
instantiations of executable program components. We have developed programming structures 
and principles for program components which permit their reusability as executable library 
components. Such program components do not assume any specific communication structure in 
which the processes instantiated from them are involved. They specify a general parametric 
interface with the type and possibly the number of its communication dependencies and all the 
actual parameters of the communication procedures, such as pvm_send and pvm_recv, refer to 
elements of the interface. A reusable program component may have any number of 
instantiations in the same PVM program, as well as in other PVM programs, each instantiation 
having its own communication dependencies. When a process is instantiated it should be given 
appropriate information setting values to its interface. This information is annotating the PCG 
and is sent by the PVM Loader. 

3. The PVM Loader. A universal PVM process which automatically initializes PVM 
programs by interpreting the annotated PCGs. The PVM Loader visits the nodes of the 
annotated PCGs and spawns the appropriate processes (instantiations of reusable components) 
according to the annotation on the nodes. The Loader then sends the process interface 
information annotating the PCG to the processes it spawned. 

The structure of the paper is as follows: in section 2 we present the annotated Process 
Communication Graphs and their script representation; in section 3 we present the structure and 
design principles of reusable programs in PVM; in section 4 we present the PVM Loader; in 
section 5 we demonstrate the methodology by composing PVM programs all consisting of two 
types of reusable components. In section 6 we present our conclusions and plans for future 
work. 

2 THE ANNOTATED PROCESS COMMUNICATION GRAPHS 

Before we define the PCGs and their annotation let us describe a distributed application which 
we shall use as a demonstrating example. 

2.1 A distributed application: Get Maximum 

There are processes instantiated from a terminal component which possess a value; all terminal 
processes or simply terminals need to get the maximum value possessed by any of them. To 



www.manaraa.com

Efficient composition of PVM programs 77 

limit the number of messages the terminals do not broadcast their own value to all others; 
instead, there are processes instantiated from a relay component to which groups of terminals 
send their values, for simplicity their tids. The relay processes or simply relays cooperate to 
find the maximum of the tids, which they then send to their respective groups of terminals. 

The terminals have one communication dependency, that with their associated relay, which 
we call S (Server) type. The relays have two types of communication dependencies, one with 
their groups of terminals, which we call C (Client) type, and one with the relays, which we call 
P (Propagation) type. A relay may have any non negative number of C dependencies and P 
dependencies. The main actions of terminals and relays are: 

The actions of a terminal The actions of a rela 
send tid to relay (to S type) receive tids from the client terminals (from C type) 

receive maximum tid from relay 
(from S type) 

find the local maximum 1M of tids 
send LM to all other relays 
receive LMs from all other relays 
find the global maximum GM 
send GM to its client terminals 

(top type) 
(from P type) 

(toC type) 

We like the program to be easily configurable, that is, to be possible to add or remove any 
number of terminal and/or relay processes, without any modification of the program 
components, i.e. the terminal and relay executables .. 

2.2 The elements of the PCG and their annotation 

Processes will be depicted on PCGs by nodes comprised of two concentric circles (Figure 1). 
On the inner circle the type of dependencies are indicated. The inner circle depicts the general 
interface type of the program components. The arcs leaving the nodes indicate communication 
dependencies (of a specific type) with other processes. The points where the arcs cut the outer 
circle depict the actual interface of processes to other processes. Each point of intersection is 
called a port and is indexed by a unique positive integer within a port type. The arcs of the 
PCG connect ports of nodes. Under this scheme terminals and relays will be depicted on PCGs 
as in Figure 1 (a) and (b) respectively. 

terminal process 

(a) 
©t 

Figure I Graphical depiction of terminal and relay processes. 

Let us assume, for example, that we have a configuration of eight terminals connected to four 
relays. The three C type ports of relay R[l] are connected with the S type ports of three 
terminals T[l], T[2] and T[3]; the two C type ports of relay R[2] are connected with the S type 
ports of two terminals T[4] and T[5]; the two C type ports of relay R[3] are connected with the 
S type ports of two terminals T[6] and T[7]; and finally the single C type port of R[4] is 
connected with the S type port of T[8]. All relays are connected to each other via their P ports. 
The PCG depicting the process dependencies is shown on Figure 2. The ports are indexed and 
connected according to the described configuration. As a matter of convenience the nodes are 



www.manaraa.com

78 Part One Research Papers 

indexed by positive integers. The elements of the PCG described so far specify a general PCG 
independent of any parallel implementation system. 

Arcs on a PCG represent communication dependencies. For a complete communication 
specification in PVM, request identifiers, called tags, are needed which are used by both 
sending and receiving processes. The tag identifiers annotate the arcs of the PCG. In Figure 2 
the arcs are annotated by unique positive integers, shown in bold. 

Nodes may be further annotated by allocation information, if a process is to be spawned on a 
particular host Finally, nodes are annotated by the full path name of the executable from which 
the process it represents will be instantiated. For reasons of simplicity allocations and 
executable path names are not depicted on Figure 2. 

Figure 2 The annotated PCG of the application Get Maximum. 

The annotated PCG may be interpreted by the PVM Loader to initiate the program. The 
annotated PCG may be produced by a graphical tool or by a textual description. We have 
developed a script language and programs which read a program script and produce the 
annotated PCG. A program script has three sections: the first describes the general PCG, the 
second the annotation of the PCG specific to a parallel environment (in this case PVM) and the 
third the annotation specific to the sequential components. 

The script generating the annotated PCG of Figure 2, is presented in two columns in Figure 
3. The first section, headed with PCG, defines the nodes and the number of ports for each type 
(e.g. all T nodes have one port of typeS); it also defines the connections between the ports. 
The second section, headed with Parallel System defines the specific PCG annotation for 
the PVM. The compulsory annotation for RequestiD, annotating the arcs, is specified; here the 



www.manaraa.com

Efficient composition of PVM programs 79 

default specifies the annotation of the arcs by unique positive integers, but generating 
algorithms or direct annotations may be defined. Also optional annotation may be specified; 
here all processes are allocated on specific hosts. The third section, headed with Sequential 
System, annotates the nodes of the PCG with the file locations of the executables of the 
sequential components from which processes are to be instantiated. From the program scripts 
annotated PCGs are produced which are interpreted by the PVM Loader initiating the PVM 
program. 

A lication 
PCG 
Co•ponenta 
I* specify for each process the 
number of porta of each type*/ 
T[l], T[2), T[3), T[4), T[S), 
T[6], T[7), T[B) #porta • S:l 
R[l) #porta • C:3, P:3 
R[2), R[3) #porta • C:2, P:3 
R[4) #porta • C:l, P:3 

Connections 
I* Connect process porta */ 
T[l).S[l) <-> R[l).C[l); 
T[2).S[l) <-> R[l).C[2); 
T[3).S[l) <-> R(li.C(3); 
T[4).S[ll <-> R[21.C[ll; 
T(SI.S[ll <-> R[21.C[2); 
T(61.S[ll <-> R[31.C[ll; 
T(71 .S[ll <-> R[31 .C[2); 
T[BI.S[ll <-> R[41.C[ll; 
R[li.P[ll <-> R(31.P[ll; 
R[li.P(21 <-> R[41.P[21; 
R[li.P[31 <-> R[21.P[ll; 
R[21.P[21 <-> R(31.P[21; 
R[21.P[31 <-> R[41.P(31; 
R[31.P(31 <-> R[41.P[ll; 

Get Maximum 
Parallel Syate• 

enviro-nt PVM3; 
PVM3 annotation 
RequeatiD : default; /* annotate area 

by integer request Ids */ 
PVM3 allocation 
I* BPBcify the boats on which 

processes are to be spawned *I 
R(ll, T[ll, T[21, T[31 at orion; 
R[21, T[41, T[51 at zeus; 
R[31, T[61, T[71 at iamini; 
R[41, T(BI at adonis; 

Sequential Syate• 
Location 

I* full path and name of executable& */ 
R: 
"/home/users/easy_spawn/bcast/relay•; 
T: 

"/home/users/eaay_spawn/bcast/terDdnal"; 

Figure 3 The script of the PVM program for Get Maximum 

3 THE DESIGN OF REUSABLE PVM PROGRAM COMPONENTS 

Reusability of compiled program components in a message passing environment demands that 
their process instantiations should be possible to establish the communication dependencies 
required by parallel programs. As the number of process instantiations and their communication 
dependencies cannot be fixed, the program components should specify the number and type of 
communication dependencies in a general way. They should only provide the means for 
establishing communication between any process instantiated from it with any other processes 
via an interface. 

For establishing a point-to-point communication between PVM processes two values are 
needed in each process: the tid of the other process and the common tag identifier. Therefore, 
we define a data structure, called component port, having two elements in which (tid, tag) 
pairs may be stored. A program component may have any number of component ports of the 
same type, which are organized in an array. Finally, a program component may have many 
types of component ports. The types of ports form the array Interface, the elements of which 

lication 



www.manaraa.com

80 Part One Research Papers 

point to their array of ports. Each port is now identified by its type and its port index within the 
type. 

Upon their creation processes should fix their interface. This involves two actions: the 
creation of the appropriate number of ports for each type and the setting of value pairs (tid, tag) 
to the port structures. We permit flexible process interfaces, as program components only fix 
the type of ports and not the actual number of the ports within types. Each process may have 
any number of ports of each type. Processes in our methodology are created by the PVM 
Loader which visits the PCO nodes and spawns processes according to the annotation of the 
node. The PVM Loader sends the number of ports of each type (depicted on the PCO node) to 
the process just created. The first action of a process is to receive the number of ports of each 
type and make the appropriate number of ports of each type in its Interface. This is coded in the 
MakePorts routine. 

The value pairs (tid, tag) for each port cannot, in general, be sent at the time of process 
creation, as a process with which it needs to communicate may have not been spawned yet and 
its tid would not be known. The (tid, tag) pairs are send to the processes after all of the 
processes have been spawned, together with the type and index of the port. The processes 
receive the type, port number, tid and tag and set their Interface accordingly. This activity is 
coded in the Setinteface routine. 

In Figure 4 we present the general structure of a reusable program component, which 
consists of a declaration of the Interface structure having N types of dependencies and as 
actions: a call of MakePort s, receiving from the Loader and making the appropriate number 
of ports of each dependency type; a call of Set Interface, receiving from the Loader and 
setting the values of the ports; and a call of RealMain which starts the main activity of the 
component All PVM reusable components have the same structure; the programmer has only to 
replace N for the specific number of the types of ports and code the component activity in the 
RealMain, in which the parameters of the communication routines pvm_send and 
pvm_recv are expressions of the form Interface [ S). port [ p). tid and 
Interface [ S) • port [ p) • tag, where S is a port type and p is the number of port. By the 
time a process calls its RealMain its actual interface would be fixed. 

void -in() 
{ InterfaceType Interface(NJ, 

MakePorta(Interface), 
Setinterface(Interface), 
RealMain(Interface), 

F1gure 4 The slructure of reusable components in PVM 

Having defined the annotated PCOs and the structure of the reusable components, we may 
describe the final facet of the methodology, the PVM Loader. 

4 THE PVM LOADER 

The PVM Loader is a universal PVM program by which PVM programs composed according 
to the methodology are initiated. The PVM Loader takes as input an annotated PCO and visits 
all its nodes; at each node the Loader spawns an instantiation of the executable file annotating 
the node. Then sends to the process just created the number of ports of each type and annotates 
the PCO node with the tid of the process. Having visited all nodes and created all processes, 



www.manaraa.com

Efficient composition of PVM programs 81 

the PVM Loader visits the nodes once more and sends the port intetface information (port type, 
port number, tid, tag) to the processes. 

Suppose, in our example (Figure 2), that the PVM Loader visits the node R[2] identified by 
10: spawns process R[2], an instantiation of the program component relay and sends to it the 
number of its ports of each type, as shown in the first column of the following table: 

actual values eli{Pianation 
c 2 type C has 2 ports 
p 3 tvoe P has 3 ports 

The PVM Loader also annotates the node by the process tid, say tid(10). In its second visit to 
the node the Loader sends to the process identified by tid(10) information to set its intetface. 
The values are shown in the first column of the following table: 

4 
5 
9 
10 
13 

Running the PVM Loader with the annotated PCG as input we get the following output; the 
first column is produced by the Loader and the second by the terminal processes: 

Spawn process 1 (terminal) tid= c0005 ( 80004) 
Spawn process 2 (terminal) tid= c0006 (100003] 
Spawn process 3 (terminal) tid• c0007 (80005) 
Spawn process 4 (terminal) tid• 140004 (140004) 
Spawn process 5 (terminal) tid= 140005 (c0005) 
Spawn process 6 (terminal) tid= 80004 (c0006) 
Spawn process 7 (terminal) tid= 80005 (c0007) 
Spawn process 8 (terminal) tid= 100003 (140005) 
Spawn process 9 (relay) tid• c0008 
Spawn process 10 (relay) tid• 140006 
Spawn process 11 (relay) tid= 80006 
S awn rocess 12 rela tida 100004 

The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 
The maximum tid is 140005 

As the twelve processes, eight terminal and four relay are spawned, the PVM Loader prints 
their tids; the terminal processes print the global maximum of their tids. All terminal processes 
print the same maximum of #140005 which was the tid of process 5. 

For a PVM program to behave correctly, the nodes on the PCG and the actual program 
components must be compatible, that is, they should specify the former virtually and the latter 
actually the same number of types of ports. Furthermore, the connections between ports should 
be of compatible type, that is connected components agree on the type of messages they 
exchange and their management. The present version of the PVM Loader does not check the 
compatibility of the connections. We are currently investigating formal methods for describing 
and testing component compatibility, which will be integrated in the PVM Loader. 

The script language is flexible and permits the rapid composition of PVM programs. It is 
straight forward to edit scripts to scale a program, by adding and connecting new components, 

components, Spawn Spawn 
formal methods 
formal methods 
formal methods 
formal methods 
formal methods 

Furthermore, Furthermore, Furthermore, Furthermore, 
Furthermore, Furthermore, Furthermore, Furthermore, 

Furthermore, Furthermore, Furthermore, Furthermore, 
Furthermore, Furthermore, Furthermore, Furthermore, 

Furthermore, Furthermore, Furthermore, Furthermore, 



www.manaraa.com

82 Part One Research Papers 

to change the allocation of processes to hosts, change the topology of the components, etc., 
without modifying the program components. 

5 VARIATIONS ON THE GEf MAXIMUM PROGRAM 

The specification for the Get Maximum program in section 2 did not specify any particular 
topology by which the relay processes should be connected. In our solution of section 2 we had 
adopted a topology in which all relay processes are connected with each other. We may achieve 
the same program functionality by adopting different relay topologies. We shall present two 
variations, one in which relay processes form a star topology and a second in which they form 
a tree topology. For these variations we will modify the scripts and not the components. 

5.1 Get Maximum by star topology 

In this solution we use an extra relay process to which the old four relay processes will be 
connected. The four relay processes have now only one P (propagation) port, through which 
they send the maximum value received from their terminals. The new relay process, let us call it 
central, has four ports of type C (clients). The P type ports of the four relay processes are 
connected to the C type ports of the central process! Let us note, that the C and the P ports of 
the relay processes are compatible, as only one value is sent and one value received through 
them. The PCG for this configuration is depicted in Figure 5: 

Figure 5 The PCG of Get Maximum by Star Topology. 

Let us describe the behavior of the program in such configuration. The four relay processes, as 
before, select the maximum of the tids of their clients but now propagate it through their single 
port of type P to the central relay process. The central relay process receives tids from its C 



www.manaraa.com

Efficient composition of PVM programs 83 

ports and selects their maximum. There are no P ports to send the maximum. It then sends its 
maximum to its C ports. What actually sends is the global maximum, as it is the maximum of 
all maxima. On its C ports there are the four relay processes. Each receives the global 
maximum, but, according to the algorithm, they know that it is only the maximum of the central 
relay process. They compare it with their own maximum, select the value they have received 
and send it to their client ports. For this solution no changes were made to the terminal or to the 
relay program components, but only to the script. The executables of the terminal and relay 
program component were reused. The new program script was produced rapidly by modifying 
the program script of the version of section 2. From the script the annotated PCG was 
produced, which was given as input to the PVM Loader. The PCG part of the modified script 
and the final output of the program are in Figure 6: 

Get-Maximum-Star 
PCG 
Coapoaeats 

T[1], T(2], T(3], T(4],T(5], 
T(6], T(7], T(8]#ports • S:1 
R(1] #ports= C:3, P:1 
R(2], R[3] #ports = C:2, P:1 
R(4] #ports= C:1, P:1 
R(5] #ports • C:4, P:O 

Coaaectioas 
T(1].S(1] <-> R(1].P(1]1 
T(2].S[1] <-> R(1].P(2]1 
T(3].S(1] <-> R(1].P(3]1 
T(4J.S(1] <-> R(2J.P[1J1 
T(5].S(1] <-> R(2J.P(2J1 
T(6J.S(1] <-> R(3J.P(1J1 
T(7J.S(1J <-> R(3J.P(2J1 
'1'(8J.S.(1] <-> R(4J.P(1J1 
R(1J.P(1J <-> R(5J.S(1J1 
R(2J.P(1J <-> R(5J.S(2J1 
R(3].P(1] <-> R(5J.S(3J1 
R(4J.P(1J <-> R(5J.S(4J1 

pawn process 1 (terminal) tid= cOOOe 
pawn process 2 (terminal) tid= cOOOf 
pawn process 3 (terminal) tide c0010 
pawn process 4 (terminal) tid• 14000b 
pawn process 5 (terminal) tid= 14000c 
pawn process 6 (terminal) tid= 8000b 
pawn process 7 (terminal) tid= 8000c 
pawn process 8 (terminal) tid= 100008 
pawn process 9 (relay) tid= c0011 
pawn process 10 (relay) tid• 14000d 
pawn process 11 (relay) tid• 8000d 
pawn process 12 (relay) tid= 100009 
pawn process 13 (relay) tid• 4000a 

(1000081 The maximum tid is 14000c 
(14000bJ The maximum tid is 14000c 
(14000c] The maximum tid is 14000c 
(cOOOaJ The maximum tid is 14000c 
(8000bJ The maximum tid is 14000c 
(cOOOfJ The maximum tid is 14000c 
(cOOlOJ The maximum tid is 14000c 
(8000cJ The maximum tid is 14000c 

Figure 6 The PCG part of the script of the Get Maximum by Star Topology and the output. 

5.2 Get Maximum by tree topology 

In this variation we maintain the relationship of the eight terminals to the four relay processes 
having, as in the star solution, one P port. The P ports of R[l] and R[2] are connected with the 
C ports of R[S) and the P ports R[3] and R[4] are connected with the C ports of R[6]. Both 
R[S] and R[6] have two C ports and one P port; their P ports are connected to the two C ports 
of R[7], which does not have any P ports. The process structure is a tree of height 3: the 
terminal processes as leafs; R[l], R[2], R[3] and R[4] at level two; R[S) and R[6] at level one; 
and R[7] as the root. At each level, the relay processes receive the values from their clients, 
select the maximum and propagate it to the next level up. The root selects the maximum and 
sends it to its client processes. The relay processes below the root do the same until the 
maximum reaches the terminal processes. The script and the output are shown in Figure 7. 

We have demonstrated the flexibility of the methodology by producing non trivial solutions 
for a program specification using the same reusable components. The program components 
were reused within the same PVM programs, as well as in other PVM programs. The only 

T
T
T
T
T
T
T
'1
R
R
R
R
R

Get-Maximum-Star 



www.manaraa.com

84 Part One Research Papers 

changes required were in the program scripts. Although the script language is still under 
development, it has been successfully used to compose and execute programs from designs 
very rapidly. 

Get-Maximum-Tree 
PCG 
Co•ponents 
T[l], T[2], 
T[6], T[7), 
R[l] 
R[2], R[3], 

R[4] 
R[7] 

Connections 

T(3], T[4],T[5], 
T[B] #ports = S:l; 

#ports • C:3,P:l; 
R[5], R[6] 

#ports • C:2,P 1 
#ports = C:1,P 1 
#ports e C:2,P 0 

T[1) .S[1) <-> R[1) .C[1); 
T[2).S[l) <-> R[1).C[2); 
T[3).S[l) <-> R[1J.C[3); 
T[4).S[l) <-> R[2).C[l); 
T[5).S[1) <-> R[2).C[2); 
T[6).S[1] <-> R[3).C[l); 
T[7J.S[l) <-> R[3J.C(2]; 
T[B).S[l) <-> R(4).C(l); 
R(1) .P[1] <-> R[5) .C(1); 
R(2) .P(l] <-> R[5) .C(2); 
R[3).P(l] <-> R(6).C(l); 
R[4).P[l) <-> R[6).C[2); 
R(7).C(l) <-> R(5).P(l); 
R[7) .C(2] <-> R(6) .P(l); 

Spawn process 1 (terminal) tid• c0016 
Spawn process 2 (terminal) tid• c0017 
Spawn process 3 (terminal) tid• cOOlS 
Spawn process 4 (terminal) tid• 140011 
Spawn process 5 (terminal) tid• 140012 
Spawn process 6 (terminal) tid• 80011 
Spawn process 7 (terminal) tid= 80012 
Spawn process 8 (terminal) tid• 10000c 
Spawn process 9 (relay) tid= c0019 
Spawn process 10 (relay) tid= 140013 
Spawn process 11 (relay) tid= 80013 
Spawn process 12 (relay) tid= lOOOOd 
Spawn process 13 (relay) tid= 40010 
Spawn process 14 (relay) tid• 40011 
Spawn process 15 (relay) tid= 40012 

[80011] 
(lOOOOc) 
[80012) 
I 140011 I 
(c0016) 
[140012) 
(c0018) 
[c0017] 

The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 
The maximum tid is 140012 

Figure 7 The PCG part of the script of the Get Maximum by Tree Topology and the output. 

6 CONCLUSIONS 

We have presented a design methodology, called Ensemble, by which we overcome the 
problems of composing arbitrarily structured static PVM programs. In the Ensemble 
methodology parallel PVM programs are virtually specified by annotated PCGs which are 
interpreted by one universal PVM Loader, spawning the PVM processes and establishing their 
communication dependencies. We produce PCGs from a script language. Although, the 
language is still under development it was shown to be flexible and permitted the rapid 
composition of PVM programs. It is straight forward to edit the script to scale a program, by 
adding and connecting new components, to change the allocation of processes to hosts, to 
change the topology, etc. We have proposed simple programming structures and principles for 
designing reusable PVM program components as library components. Program components are 
easy to write, as the main actions of program components are wrapped within fixed code 
segments. The programmer is not concerned with writing code for achieving a process 
topology. 

We demonstrated the flexibility of the methodology, by composing various solutions to the 
Get Maximum problem. Having constructed the program components for the first solution we 
used them to compose and execute new PVM programs. This approach is related to the 
composition of object oriented applications by using objects and scripts (Nierstratz et al., 

Get-Maximum-Star 



www.manaraa.com

Efficient composition of PVM programs 85 

1991), as it encourages a component oriented approach to application development. We shall 
pursue this ·aspect in future work. 

The Ensemble methodology is not concerned with the efficiency of program execution. It 
supports the efficient composition and initialization of applications. The methodology affects 
the efficiency of the program execution only marginally; before the processes begin their main 
actions they have to call the MakePorts and Set Interface routines. 

The Ensemble methodology may be applied to other message passing parallel environments 
by developing specific techniques and tools. We have applied it to the Massively Parallel 
architecture of PARSYTEC GC3/512 running the Parix environment (Cotronis, 1995). The 
Parix environment imposes altogether different constraints to programs than PVM. Parix 
requires different PCG annotation techniques, its own construction of reusable program 
components and its own Loader. We shall compare implementations of the methodology under 
PVM, Parix and other environments in a future report. We shall also investigate the portability 
of parallel programs developed with this methodology. Let us finally comment, that the script 
language and the structure of the reusable components are such that it seems possible to port 
programs by editing the annotation parts of scripts and by making new reusable components in 
the target environment by just changing the "wrapping code" of the RealMain procedure in 
the components. 

7 REFERENCES 

Andrews, G.R. (1991) Paradigms for Process Interaction in Distributed Programs, ACM 
Computing Surveys, Vol. 23, No.I, March 91. 

Cotronis, J.Y. (1995) A Methodology for Initiating Arbitrary Structured Programs in Parix by 
Interpreting Graphs, in Proceedings of ZEUS 95 {ed. P. Fritzon and L. Finmo) lOS Press. 

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. {1994) 
PVM 3 User's guide and Reference Manual, ORNUfM-12187, May 1994. 

Nierstratz, 0., Tsichritzis, D., de Mey V. and Stadelmann, M. {1991) Objects + Scripts = 
Applications, in Proceedings of Esprit 1991 Conference, Kluwer Academic Publishers. 

Norman, M.G. and Thanisch, P. {1993) Mapping in Multicomputers. ACM Computing 
Surveys, Vol. 25, No.3. 

Pouzet, P., Paris, J. and Jorrand, V. {1994) Parallel Application Design: The Simulation 
Approach with HASTE, in Proceedings of. HPCN, Munich, Vol II. 

Scheidler, C and Schaefers, L. {1993) TRAPPER: A Graphical Programming Environment for 
Industrial High-Performance Applications, in Proceedings of PARLE Conf., Munich. 

8 BIOGRAPHY 

Dr. J.Y.Cotronis obtained his Ph.D. in Computer Science in 1982 from the Computing 
Laboratory, University of Newcastle-upon-Tyne, where he also worked as a Research 
Associate in projects in the area of parallelism. He has been involved in a number of R&D 
projects in industry and academia. He is an Assistant Professor and his current research 
interests are on methodologies and supporting tools for composing and porting parallel 
applications. 



www.manaraa.com

8 

Arcadia: A platform for the study of 
dynamic scheduling of communicating 
processes 

Bernon C., Betourne C. and Sayah A. 
lnstitut de Recherche en lnformatique de Toulouse (/RIT) 
Universite Paul Sabatier 
118 Route de Narbonne- 31062 Toulouse Cedex- France 
Tel. (33) 61.55.83.43 Fax (33) 61.55.68.47 
E-mail: bernon, betourne, sayah @iritfr 

Abstract 
We present a strategy for dynamically schedule communicating processes of a parallel 
application onto a loosely coupled distributed system. As we must manage two criteria to 
schedule processes (the workload of the differents sites and the cost of the communication 
between processes), the algorithm proposed uses two types of agents (system agents and 
application agents). A system agent manages the workload of its site, an application agent 
reduces the IPC costs within its application. Our two types of agents cooperate and negociate to 
make a trade-off between the two criteria Therefore, we describe the different cooperations 
needed via a two-layer model. An implementation of this strategy is also described and 
experimental results analysed. The results obtained justify certain of our design choices and 
show that the improvement provided by our scheduling algorithm is satisfactory. 

Keywords 
Dynamic scheduling algorithm, communicating processes, agents, co-operation. 

1 IN1RODUCI'ION 

The main goal of this paper is to study how an application can run transparently over a 
distributed network of workstations using dynamic process scheduling. The study is based on 
several premises: 
• the concept of a loosely coupled distributed system, i.e. a system of interconnected 

workstations communicating over a network, is becoming more and more widespread; 
• in such environments, certain machines are overloaded while others remain idle 

(Krueger,91 ); 
• increasing numbers of system designers are producing parallel applications, but they rarely 

take full advantage of the resources provided by the underlying distributed system, opting 
instead for pseudo-parallel execution. 



www.manaraa.com

Arcadia: the study of dynamic scheduling of communicating processes 87 

Extensive research has been done on the strategies that can be employed for application 
process scheduling (B1yant, 81; Ferrari,87; Bernard,93; Ju,95). Our work on the behaviour of 
a multi-agent system developed at IRIT has led us to identify the following application features: 
• an application is made up of a large number of entities executing in parallel; 
• these entities have long execution times; 
• they communicate by message passing, in an unpredictable fashion; 
• the application behaves in a nondeterministic manner. 

The second goal of our study was to develop a platform to apply the scheduling strategy 
adopted, with a view to evaluating the strategy and thus providing input for the design of 
scheduling algorithms. 

We shall now look at the broad outline of this algorithm, the model chosen and the policies 
adopted to implement it. How the test platform was implemented and the experimental results 
obtained will be discussed later. 

2 ALGORITHM SPECIFICATIONS 

Two types of scheduling algorithm exist: those that schedule processes statically before 
execution (Billionnet,89) and those that schedule them dynamically while an application is 
running (Bernard,93). 

We opted for a dynamic scheduling algorithm for the following reasons: 
• static scheduling is less flexible than dynamic scheduling; 
• the way processes communicate and how much interaction will take place cannot be 

predicted; 
• it is hard to gauge how an application will behave, and therefore to apply predetermined static 

schemes. 

Further, as the processes created by the applications studied have relatively long execution 
times, we could also look at ways of moving processes during execution, so a suitable process 
migration mechanism is supposed to already exist (Nutall,94). 

The aim of a dynamic scheduling algorithm is to answer the question 'when do we move a 
process, which process do we move, and where do we move it?'. Three policies are usually 
implemented in response to these issues (Zhou,88): 
• the information policy, which determines the type of information required to enable 

scheduling decisions to be made, and how that information is gathered; 
• the transfer policy, which determines whether processes need to be moved, and if so which 

process should be moved; 
• the location policy, which determines which processor should be allocated to the process 

selected above. 

We shall now consider the main features of these three policies with respect to the scheduling 
algorithm adopted. 

2.1 Information policy specification 

Information policies usually rely on processor characteristics (system configuration, workload, 
available memory, etc.) as a basis for scheduling decisions. The processor workload index most 
often used is the number of processes ready to execute on a CPU at a given moment (Ferrari,87; 
Kunz,91). We shall adopt a similar index. 

Where processes are communicating, we need to consider their characteristics (resources 
requested, estimated execution time, etc.) and how they interact (relationships, frequency and 
volume of communications, etc.). Neither of these factors is known in advance. First, by 



www.manaraa.com

88 Part One Research Papers 

looking at the intensity and volume of intercommunication between processes, we can detennine 
how they interact. 

The infonnation policy must then determine to which system processors infonnation applies 
(to all or just some processors). This infonnation may be gathered on request (Zhou,88), 
periodically (Litzkow,88), or in response to process state transitions. We opted for a scheme 
based on state transitions, in which information may be gathered in a centralized or decentralized 
manner (Douglis,91). We chose the latter solution, given the weak points of centralized 
management (bottlenecks, lack of fault tolerance, etc.). lnfonnation can therefore be 
communicated between pairs of processors (Bryant,81), distributed to all other system 
processors (Disted in (Zhou,88)) or to a subset thereof (Ni,85). 

To reduce the overhead generated by the algorithm, we also introduced the concept of logical 
neighbourhood, i.e. each site is interconnected with a certain number of other sites, which we 
call its logical neighbours. Each site obtains infonnation from its logical neighbours, and can 
also request to transfer execution of a process to them. Site subsets thus defined may be 
disjoint, and define a logical topology that exists on top of the physical network topology. 
Varying this logical topology varies the information on which the algorithm bases its decisions 
(full information if all sites are interconnected, partial information otherwise). Defining sets of 
interconnected sites (via 'gateway' sites) also enables processes to be propagated through 
neighbouring sites along the network. 

2. 2 Transfer policy specification 

The transfer policy starts by examining how processes are scheduled at various instants 
according to the current load distribution. Two situations may arise: 
• Load balancing: work load is distributed equally among all processors. Processes may 

therefore be rescheduled every time the load on a site varies. 
• Load sharing: work load is smoothed out progressively on each individual processor. This 

avoids any site becoming temporarily overloaded, and a process need only be rescheduled if 
the load on a site becomes too high. 

Although the second technique involves less overhead, we decided to balance the load on 
each system processor. Logically, if the scheduling algorithm is efficient, load sharing should 
not have an adverse effect on system performance. 

Generally speaking, transfer policies are based on thresholds (Stankovic,84; Shivaratri,92). 
In other words, a processor transfers a process if its workload exceeds a predetermined 
threshold, otherwise it can receive processes itself. A relative transfer policy may also be 
employed (Douglis,91), whereby the level at which a processor is considered overloaded is 
defined with respect to the load on other processors. 

The algorithm proposed employs a combination of the above techniques. A site S 
interconnected with a neighbouring site SN with a lower load becomes a candidate to transfer its 
processes. SN will receive if its load is, at least, a certain percentage lower than that of S. 

Choosing which process to move means deciding which process is the best candidate for 
remote execution. Some research has been done on manual filters using a special command to 
indicate which process should be transferred (Folliot,92). Other research has looked at the use 
of transparent filtering (Svensson,90; Ju,95) based on estimated CPU time used up by a 
process, or the resources it requires to execute. 

Our study places no restriction on remote process execution. We therefore assume that any 
process can be transferred to and executed at another site. The process that is normally sent to 
execute at a remote site is the one which causes processor load to increase in the first place, thus 
switching it to a 'transfer' state. However, to ensure that the algorithm remains stable (i.e. to 
avoid a process migrating through the network in vain without ever tenninating (Stankovic,85)) 
a process returned to a site where it already been executed must fmish executing on that site. 



www.manaraa.com

Arcadia: the study of dynamic scheduling of communicating processes 89 

2.3 Location policy specification 

The final step in a dynamic scheduling algorithm involves selecting the processor to be allocated 
to the process identified by the transfer policy in the preceding step. 

Again, a centralized policy is considered unsuitable for the reasons already discussed (§2.1). 
By employing a decentralized policy, a receiving processor can be chosen randomly (Random in 
(Zhou,88)) or cyclically (Wang,85), i.e. without knowledge of processor status. Where 
processor selection is predicated on a certain degree of prior information (full or partial), the 
entities applying the location policy must co-operate. As we shall see in section 3.3.3, we plan 
to use a scheme whereby sending and receiving processors negotiate before a process is 
effectively scheduled. This method is also used in (Bryant,81; Stankovic,84). 

With the broad outline of the dynamic scheduling algorithm proposed in this paper now 
established, we shall look at the model adopted to implement it 

3 A TWO-LAYER MODEL 

We have seen that the algorithm must be applied in a decentralized manner. This is achieved 
through a set of entities distributed throughout the system. We shall call one of these entities the 
'agent', in the sense given to this term in distributed artificial intelligence (Ferber,88). 

Deciding to execute two communicating processes at two remote sites involves a trade-off 
between the performance gains achieved by executing them in parallel and the cost generated by 
their inter-communication. While many static scheduling algorithms attempt to reduce inter
process communication costs (Billionnet,89), very little consideration has been given to this 
problem when designing dynamic algorithms (Stankovic,84; Folliot,92). This is one of the 
main aims of this study. 

Rather than use an objective function based on run times and communication costs, we chose 
to express these two parameters separately using a two-layer model: 
• a 'system agent' (SA) is associated with each site and manages that site; 
• an 'application agent' (AA) is associated with each application on each site and handles 

communications within that application. 

3.1 System agents 

The purpose of a SA is to reduce the workload on its site by transferring execution of certain 
processes to its logical neighbours. It does this by evaluating its own site load and the load of its 
logical neighbours. Co-operation between SAs in the network balances workload over the 
various network sites. 

3.2 Application agents 

The purpose of an AA is to reduce IPC costs within the application, by co-operating with other 
AAs associated with the application. It does this by tracing calls to primitives for inter-process 
communication and compiling process communication statistics. 

3.3 Interaction between agents 

SAs exchange information with each other on the status of their associated site. In attempting to 
reduce workload on their site, SAs tend to disperse processes belonging to the application over 
the network. 

An application's AAs also exchange information on inter-process communication. In 
attempting to reduce IPC costs, they tend to keep processes as close to one another as possible. 



www.manaraa.com

90 Part One Research Papers 

As system and application agents often reach conflicting scheduling decisions, they have to 
co-operate, sometimes negotiate, to resolve contention. This requires a third level of 
communication between site SAs and local AAs. 

We shall now look at how such co-operation is achieved within each of the three algorithm 
policies. 

Co-operation in information policy 
The SA alone decides where processes at a site S shall execute. To ensure this decision takes 
account of inter-process communication constraints, the local AAs must have a bearing on the 
SA's choice. But a process P waiting for a CPU time slice to be allocated to it is unable to send 
or receive messages. Further, execution of other processes waiting for messages from P is also 
slowed down. To speed up execution of P it must therefore be transferred to a site with a small 
workload. An SA must therefore eliminate any processes executing locally or prevent remote 
processes from being executed locally. 

The solution adopted therefore consists in increasing site load virtually by including inter
process communication in load computations. An AA does this by giving a 'weight' to each of 
the processes it controls, according to how communication-intensive it is. This weighting is 
then taken into account by the local SA when computing its own site load. 

Co-operation in transfer policy 
An SA detects when its site is overloaded. It can then decide alone which process to move; but it 
may first consult AAs at its site if required. An AA responds by indicating which process would 
most reduce communication overhead within the application if it were transferred. The SA then 
makes its choice on the basis of all responses received. 

Co-operation in location policy 
To improve the stability of the algorithm, a negotiation phase is introduced between the SAs of 
the sending and receiving sites. The receiving site commits itself to execute a transferred process 
on arrival. This means that: 
• the process will not be rejected on arrival at the receiving site; 
• the receiving site will not become overloaded if several transferring sites select it 

simultaneously. 

A receiving site thus accepts a process before it is transferred and is able to make room for it 
before it arrives. · 

Where co-operation between SAs and AAs is necessary, we need to make sure that process 
scheduling is efficient enough to compensate for the higher cost of the algorithm, and that the 
latter still reduces application response times. 

However, if a certain criterion proves too costly to handle, the corresponding component can 
be taken out to reduce the overhead generated by the algorithm. Breaking down the algorithm in 
this way improves its flexibility and reduces its cost. The scheduling policy can thus be based 
on: 
• load sharing alone if SAs alone make scheduling decisions; 
• a reduction in communication overhead if AAs alone make these decisions. 

4 EXPERIMENTAL PLATFORM IMPLEMENTATION 

In this section we shall briefly describe how the test platform is implemented. To evaluate the 
scheduling strategy described below, we developed a distributed experimentation prototype 
written in C++ to run in a Sun/Solaris 2.4 environment. This prototype is able to simulate a 
network of N sites and its architecture is shown in figure 1. 



www.manaraa.com

Arcadia: the study of dynamic scheduling of communicating processes 91 

Logical Level 
(Piatfonn) 

Physical Levd 
(Netwolk) 

Figure 1 Prototype architecture. 

Virtual Sites 
(Simulated) 

Real Sites 
(Wolkstations) 

A virtual site, represented by a UNIX process, is activated by the Arcadia command. The 
user is able to configure simulations by setting this command's parameters (number of virtual 
sites, scheduling strategy, etc.) and via additional configuration files. The components of a 
virtual site are represented by lightweight processes: 
• the CPU handling processes at the site; 
• the site SA; 
• the AA associated with each application likely to send a process to execute at the site; 
• applications initially staned at the virtual site. 

These various components are arranged according to the logical scheme of a virtual site 
shown in figure 2. We shall now look briefly at the overall behaviour of each of these 
components. 

RQ Ready to exeeut<:<peue 

MQ Awaiting messages qtl'U<: 

Processes anronnations 

MQ Awaiting migration qtl'UC 

Me Q Q.IO of mess gcs received by a 
process 

Figure 2 Logical scheme of a virtual site. 



www.manaraa.com

92 Part One Research Papers 

4.1 Behaviour of the components of a virtual site 

Applications 
An application is 'monitored' and managed by a certain number of AAs. It first has to activate 
its agents, and as an application cannot migrate (only processes can be moved) it has to go 
through an intermediate SA at each remote site to activate them. The application then creates a 
'parent' process from which all application processes will be created, which waits for its 'child' 
processes to terminate before terminating itself. We thus have a hierarchy in which each child 
process can also create its own child processes, with the application at the top of the pyramid. 
The application therefore waits for all its processes to temrinate before temrinating itself. 

Processes 
Unlike all the other entities in the prototype, a (virtual) process is not represented by a thread. 
Indeed, processes must be able to migrate and it would be inexpedient to build a tool for real 
process migration, even for lightweight processes. Process behaviour is therefore described via 
a subroutine that simulates process execution. The code run by a process is replicated at each 
network site. Thus, process migration between two sites amounts to transferring the data 
needed for a process to resume execution at the remote site and the cost of this migration is the 
cost of the transformation of data into messages and conversely. 

CPUs 
Local processes are executed on each CPU in a time-sharing environment. The CPU does this 
by placing processes in three queues: ready to execute, awaiting message, and finished. It then 
selects the process at the head of the ready queue at the start of each CPU cycle and allocates it a 
time quantum. 

Agents 
We can think of an agent as an entity that reacts to events (the load on a neighbouring entity 
falls) and takes scheduling decisions (transferring a process to that entity). It detects local or 
remote events directly by analyzing its own data, or indirectly on the basis of messages it 
receives and processes according to their priority (urgent, rapid, or normal) and then on a first
come first-served basis. 

SAs and AAs do not detect the same events and react differently. For this reason, we shall 
distinguish between them in our analysis of how the algorithm is implemented in our prototype. 

4. 2 Implementation of Arcadia scheduling strategy 

Information policy 
Statistics on a process P indicate the number of messages it has passed or received during an 
interval of S seconds, the amount of data it has passed or received in that interval, and the 
identity of its companion processes. 

Site workload is represented by the sum of the weight values attached to the processes at a 
site at a given instant. The weight of a process P depends on the number of receiving processes 
under its control over the last S seconds. Priority is thus given to processes that are passing 
messages. Currently, the weight of Pis equal to the number of receiving processes P possesses 
but its calculation should evolve to take into account other criteria. 

An SA manages a vector storing information on the load of neighbouring sites. This vector is 
updated each time a message is received conveying the new load of one of these sites. An SA 
communicates with its logical neighbour sites whenever its site load increases (when a process 
is created, execution of a remote process is accepted or the weight of a process increases) or 
decreases (when a process finishes executing locally, it can execute at another site or its weight 
decrease). 



www.manaraa.com

Arcadia: the study of dynamic scheduling of communicating processes 93 

Transfer policy 
An SA considers that its site is overloaded when its load exceeds that of its logical neighbours, 
and decides that a process needs to be moved. Generally speaking, it is the process at the root of 
the overload that is moved to execute remotely. 

The SA and AA negotiate if the number of processes ready to execute at a site S exceeds a 
certain threshold, and if the load of S is above the average load of its logical neighbour sites. 

An AA calculates the reduction in communication costs achieved for each process P it 
controls that is sent to execute at the site selected by the SA. This calculation is based on the 
amount of data exchanged by P during the most recent time interval. Performance gains could 
also be estimated by attempting to forecast subsequent process communications. An AA then 
signals to the SA which process should be moved to obtain the highest gain. 

Location policy 
The location policy, working in tandem with the transfer policy, locates the neighbouring site 
with the lowest load below a threshold proportional to the load of the transferring site. Our 
policies are thus relative. 

The SA at the receiving site accepts the process to be sent providing its execution will not 
push its own load above that of the sending site, and above the predetermined threshold. 

We chose to apply a threshold to control site selection in order to allow for a certain degree of 
uncertainty with regard to network status, and thus to render the algorithm more stable. 

5 ANALYSIS OF SOME EXPERIMENTAL RESULTS 

We shall now evaluate the results obtained with our prototype to ascertain the efficiency of our 
scheduling strategy. This will lead us in tum to consider to what type of applications the 
algorithm is best suited. 

The results discussed here were obtained by nmning simulations of a network of 8 virtual 
sites on a four-processor Sun Sparc-20 workstation. An application comprising a certain 
number of interacting processes (300, 2, 30, 8, 350, 10, 30 and 260, respectively) executed at 
each site. 

5.1 Performance measurements 

Each site simulated by the prototype returns results to an associated file. These results are used 
to obtain performance measurements enabling the impact of the scheduling algorithm on the 
applications tested to be assessed. Performance crileria measured were: 
• overall performance gains provided by the algorithm, i.e., the difference between the 

response time obtained, for all the applications, with and without the scheduling strategy; 
• distribution of workload over the sites during the simulation. This may be measured in terms 

of the number of processes ready to execute at a site over time, or the time spent by each site 
executing processes; 

• the amount of negotiations between sending and receiving SAs that end with a process being 
effectively transferred, in order to evaluate the location policy. 

5.2 Algorithm performance 

To measure the influence of some parameters of the algorithm, we have set the value of the 
others and we varied the value of the considered parameters. This method has been applied for 
all the parameters of the algorithm. The results reported below are averages obtained from 
several simulations using the same parameters. 



www.manaraa.com

94 Part One Research Papers 

Varying the logical topology 
In the first applications we tested, processes communicate in pairs, therefore, the weight has no 
influence on the performance (all processes have the same weight) and we varied the logical 
topology of the 8-site network. The threshold applied by the location policy was 30% of the 
load of the sending site. The different logical topologies used are shown in figure 3. 

Topology I 
( o knowledge) 

@ C0 @ 
@ ® 
® ® ® 

Topology 4 

Topology 2 
(Total knowledge) 

@--® 
@--® 

Figure 3 Logical topologies used. 

Two of these topologies were diametrically opposite: 

Topology 3 

• Topology 1: each site had no logical neighbour sites. No remote scheduling was therefore 
possible, but the fact that sites attempted nevertheless to move processes resulted in an 
overall performance drop of roughly 1% with respect to when the algorithm is not applied 
(figure 4a). 

• Topology 2: all sites were able to interact. Although this topology enabled load balancing 
between sites (figure 4b), it did not achieve the highest overall performance gain. This is 
because the information policy created a lot of overhead, since the algorithm was slowed 
down by the large number of information or control flow messages. 

CSiteO C Site I ll Site2 ll Silc3 

• Sile4 • sitc5 • Site6 C Sile7 

2 3 4 5 
Logico/topolagy 

(a) Load distribution over sites. 

Figure 4 Varying the logical topology. 

2 3 4 5 
Logical topology 

(b) Overall performance gain provided. 



www.manaraa.com

Arcadia: the study of dynamic scheduling of communicating processes 95 

To reduce this overhead, we reduced the number of logical neighbours connected to each site 
and adopted topology 3. Load balancing was still efficient, but this time the overall gains 
achieved with the algorithm increased by roughly 6%. Practically the same result was obtained 
with topology 4, in which pairs of sites were able to interact, but load balancing was clearly not 
as good. This was due to the deliberate link we introduced between a site running a 'small' 
application and a site supporting a 'large' application. This allows the bigger applications to load 
off onto the smaller applications in expedient fashion. They do not transfer sufficient load to 
balance out overall load completely, but enough to achieve a good overall level of performance 
made easier by using a less costly information policy. It is likely that the impact of these last two 
topologies would be greater on a larger network, as total knowledge would generate a 
prohibitive cost for the algorithm. 

By adopting topology 5 and allowing a single site to interact with the entire network, we 
found that this 'gateway' site becomes overloaded with information messages and, although it 
can distribute load over the network, is therefore less efficient than the other topologies already 
described 

Varying the logical network topology and, therefore, the knowledge on which our agents 
rely, shows that SAs and AAs can achieve the overall goal of improved response time with only 
a partial view of their environment, i.e. a restricted number of logical neighbours. 

Linking underloaded and overloaded sites would not appear feasible, however, as their status 
cannot be predetennined. In choosing a logical topology, we are therefore forced to make a 
trade-off between the following requirements: 
• sites must have a limited number of logical neighbours to limit overhead due to the 

information policy; 
• sites must have a large enough number of logical neighbours to be able to load off excess 

processes; 
• certain sites must serve as gateways between subsets of sites, so that processes can be 

disseminated through the network. 
Our research suggests that a good solution would be to adopt an initial logical topology 

capable of evolving dynamically in response to site loads and application behaviour. This 
problem has also been discussed in (Kremien,93). 

Bearing of process weight and process migration 
One seeks now to measure the influence of the weight. To do this, some processes of an 
application passe messages to several other processes thaht only receive. Working on the basis 
of the same load imbalance, we shall now compare cases where: 
• the full algorithm is applied; 
• process migration is forbidden, meaning that a process can only be moved when it is created; 
• process weight is not taken into account in site load calculations. 

These cases are indicated by the legends 'full algo', 'no migration' and 'no weight' in figure 
5. 

Process weighting has an affect on scheduling efficiency, and no weighting at all reduces the 
performance gains achieved on all applications and the success rate of inter-site negotiations by 
around 10% (figure 5b). A load imbalance tends to persist when weighting is not used (figure 
5a). It would therefore seem that weighting a process according to the communication overhead 
it generates is a reasonable assumption to work on. 

We can also see from figure 5 that, in our simulation at least, no benefit is gained from 
moving a process during its execution. Processes transferred during execution are those whose 
weight has just changed, meaning they are processes that have already used up a certain amount 
of CPU time. The execution time remaining is probably too short for remote execution to be of 
any benefit to them, as the overhead generated by transferring them outweighs any performance 
gains obtained. Failing to put a limit on remote process execution can therefore lead to perfectly 
needless process migration. 



www.manaraa.com

96 Part One Research Papers 

I • Full algo A No migration 0 o weight • No algo I 

]'4000 
~ 

" ·;;, 3000 

" ~ 
";! 2000 

fl. 

-~ tOOO 

··--
......• 

• --&-- • 

SitcO Silc I Silc2 Sile3 Sile4 Si1c5 Si1e6 Sitc7 

tOO 

80 

60 

40 

20 

0 

_._a-an gain(%) 
......... success rate (%) 

• • .... 

~ 

Fuu tlao No 
rmgr.tion 

Nowdght 

too 

80 

60 

40 

20 

0 

(a) Load distribution over sites. (b) Overall 
provided and 
negociations. 

performance gain 
success rate of 

Figure 5 Effects of the variation of the algorithm. 

6 CONCLUSION 

The algorithm described here is a completely decentralized, dynamic scheduling algorithm 
whose unique feature is its ability to take into account inter-process communication. The 
algorithm is split into two parts, thus generating two types of entities to apply its policies: 
'system agents' and "application agents'. These agents co-operate and negotiate with each other, 
i.e.: 
• co-operation between SAs allows load sharing between sites; 
• co-operation between AAs reduces process communication costs within an application; 
• co-operation between SAs and Ms allows load sharing and reduces IPC costs in all 

applications. 

Process execution time and communication overhead are expressed by 'weighting' each 
process. The weight of a process depends on the number of potential receivers of its messages, 
and can only be calculated by an AA. SAs use these weight values to calculate their site load. 

We developed a prototype capable of running applications over a network of sites to test our 
scheduling strategy. A lot of improvements still need to be made before we can consider that the 
scheduling strategy we have adopted is really effective, and before identifying the types of 
application to which it would be best suited. However, results obtained have justified certain 
conceptual hypotheses and opened up numerous research prospects: 
• Allocating a weight to each process to factor in communication overhead is a viable working 

hypothesis. However, weight computation needs to be improved and further tests will be 
required. 

• It ought to be possible to make the scheduling algorithm more adaptable by distributing it 
over the network through the use of agents. An agent could be allowed to request or load off 
work depending on the perceived status of its environment. 

• Process migration does not appear essential for the applications we tested, unless processes 
executing remotely are filtered. However, migration would certainly prove useful where the 
risk of site overloading is high, or to provide fault tolerance. 

• Overall performance gains vary from application to application, but the 45% to 60% 
improvement obtained is satisfactory. However, our results were enhanced by deliberately 
creating large load imbalances between sites. 



www.manaraa.com

Arcadia: the study of dynamic scheduling of communicating processes 97 

7 REFERENCES 

Bernard, G. Steve, D. and Simatic, M. (1993) A survey of load sharing in networks of 
workstations. Distributed Systems Engineering, 1-2, 75-86. 

Billionnet, A. Costa, M.-C. and Sutter, A. (1989) Les problemes de placement dans les 
systemes distribues. T.S.I., 8-4, 307-337. 

Bryant, R. and Finkel, R. (1981) A stable distributed scheduling algorithm. Proc. of the 2nd 
ICDCS 314-323. 

Douglis, F. and Ousterhout, J. (1991) Transparent process migration: design alternatives and 
the Sprite implementation. Software-Practice and Experience, 21-8,757-785. 

Ferber, J. and Ghallab, G. (1988) Problematique des univers multi-agents intelligents. 
Journees Nationales du PRC lA. Toulouse, 295-320. 

Ferrari, D. and Zhou, S. An empirical investigation of load indices for load balancing 
applications. Proc. of PERFORMANCE' 87 , 515-528. 

Folliot, B. (1992) Metlwdes et outils de portage de charge pour Ia conception et Ia mise en 
reuvre d' applications dans les systemes repartis Mrerogenes. PhD Thesis - Universite Pierre 
et Marie Curie - Paris VI. 

Ju J. Xu, G. and Yang, K. (1995) An intelligent load balancer for workstation clusters. 
Operating Systems Review, 29-1, 7-16. 

Kremien, 0. Kramer, J. and Magee, J. (1993) Scalable load-sharing for distributed systems. 
HICSS-26. 

Krueger, P. and Chawla, R. (1991) The Stealth distributed scheduler. Proc. of the lith 
ICDCS, 336-343. 

Kunz, T. (1991) The influence of different workload descriptions on a 
heuristic load balancing scheme. IEEE Transactions on Software Engineering, 17-7, 725-

730. 
Litzkow M.J. Livny, M. and Mutka, M.W. (1988) «Condor: A hunter of idle workstations. 

Proc. ofthe Bth/CDCS, 104-111. 
Ni, L. M. Xu, C-W. and Gendreau T. B. (1985) A distributed drafting algorithm for load 

balancing. IEEE Transactions on Software Engineering, 11-10, 1153-1161. 
Nutall, M. (1994) A brief survey of systems providing process or object migration facilities. 

Operating Systems Review, 28-4, 64-80. 
Shivaratri, N. Krueger, P. and Singhal, M. (1992) Load distributing for locally distributed 

systems. IEEE Computer, 25-12, 33-44. 
Stankovic, J. and Sidhu, I. S. (1984) An adaptative bidding algorithm for processes, clusters 

and distributed groups. Proc of the 4th ICDCS, 49-59. 
Stankovic, J. (1985) Stability and distributed scheduling algorithms. IEEE Transactions on 

Software Engineering, 11-10, 1141-52. 
Svensson, A. (1990) History, an intelligent load sharing filter. Proc. of the lOth ICDCS, 546-

553. 
Wang, Y-T. and Morris, R.J.T. (1985) Load sharing in distributed systems. IEEE 

Transactions on Computer, 34-3, 204-217. 
Zhou, S. (1988) A trace-driven simulation study of dynamic load balancing. IEEE Transactions 

on Software Engineering, 14-9, 1327-41. 



www.manaraa.com

9 
Interactive testing tool 
for parallel programs 

H. Krawczyk and B. Wiszniewski 
Technical University of Gdansk, 80-952 Gdansk, Poland 
Fax: (48)(58)416132, Email: {hkrawk, bowisz}@pg.gda.pl 

Abstract 
The paper presents a model for structural testing of parallel software defmed as a 
graph consisting of interconnected node objects and a tool STEPS implementing it. 
The number of test cases required by STEPS is much lower than with the use of tradi
tional flow-graph representations. The tool facilitates systematic testing procedures 
based on the concept of communication events and test windows. Various testing sce
narios may be defmed for windows at several levels of abstraction, with regard to 
specific classes of errors, structural testing strategies, internal system states and exter
nal environment settings. 

Keywords 
Structural testing, communication events, parallel control flow 

1 INTRODUCTION 

Developments in parallel programming languages and implementation platforms, 
along with raising expectations and needs of software users, have created new chal
lenges for software testing. Various testing strategies and tools have been invented to 
assist users in software testing (Lutz, 1990), but they still seem not to be effective 
enough. Only a few of them can create test data and provide analysis of expected re
sults. We classify them into three categories: path-wise test data generators PTDG 
(Therenod-Fosse and Waeselynck, 1993), data specification systems DSS (Korel, 
1990), and random test generators STG (Maurer, 1990). Specifically, for testing paral
lel programs they may utilize several standard techniques including: static analysis 
(Taylor, Levine and Kelly, 1991), deterministic execution of parallel programs (Tai, 
Carver and Obaid, 1991), or controlled execution (Damodaran-Kamal and Francioni, 
1994). 



www.manaraa.com

Interactive testing tool for parallel programs 

PTDGs are based on a program graph, where a path is chosen through a graph and 
is symbolically executed in order to determine a path condition. Path condition is a 
predicate that defines a subset of a program space called a path domain. An input 
point is a data from a path domain that can cause this path execution. Finding of input 
points for individual paths is not easy, and requires a capability of solving sets of 
equations. 

DSSs generate test data from a language describing input data being prepared by a 
user. Examples include grammatical descriptions, finite state machines or special in
put (test script) files (Hoffman and Strooper, 1991). Unfortunately, DSS test data can 
exercise relatively small percentage of program code. 

STGs combine infonnation provided by a program model with a random test gen
eration. They rely on two parameters: input distribution, and the number of program 
executions. Two approaches are possible: analytical, where input parameters of path 
conditions are generated at random, and empirical, where statistics on various activa
tion of program run-time code elements are collected to create a suitable input profile. 
One important technique is mutation analysis (DeMilio and Offutt, 1991), where er
rors are modeled as random and small syntactical deviations of a program text from its 
hypothetical correct version. Test data are intended to detect incorrect (mutant) ver
sions of a program under test. 

In this paper we introduce a tool for Structural TEsting of Parallel Software 
(STEPS). It considers processing of data by interacting parallel processes (tasks) with 
regard to their relative timing. In practice a number of required paths and input points 
involving parallel execution can grow rapidly. We propose a test window approach, 
which concentrates on testing sequential segments of a parallel program as well as 
specific sets of communication actions forming communication events (Szczerba and 
Wiszniewski, 1995; Krawczyk and Wiszniewski, 1996). Such a window allows users 
to create different testing scenarios, and to analyze programs on different levels of 
abstraction. 

The STEPS tool combines several ideas from the tools mentioned above. It utilizes 
symbolic interpretation to determine path conditions. Input points for individual seg
ments are selected by users in an interactive way supported by Prolog interpreter; 
upon returning a condition the user may repeatedly choose input points that the inter
preter uses next in an attempt to resolve or simplify a related condition. The tool uses 
finite state machines to describe and analyze behavior of processes during communi
cation events (Krawczyk and Wismiewski, 1995). This analysis is also based on 
Prolog interpretation. Finally the tool is able to collect data on program execution that 
are relevant for designing testing scenarios. It can also override dynamically (during 
program execution) values of variables being returned by function calls and 1/0 state
ments, what provides a limited 'dynamic' mutation capability of a program under test. 

The most important feature of STEPS is that, unlike most of the tools mentioned 
above, it uses static and dynamic analysis jointly and enables deterministic as well as 
controlled execution. 

The tool has been implemented for the Copemicus-SEPP project (Winter and Kac
suk, 1994) using PVM programs in C. Initial results obtained when applying STEPS 
to a set of realistic application programs are promising and indicate that structural 
testing of parallel programs can reasonably involve interactive path analysis. 

99 



www.manaraa.com

100 Part One Research Papers 

2 PARALLEL SOFTWARE MODEL 

STEPS views parallel programs as sets of event-driven activities that are independent 
units communicating through a set of well defined interface access points. Interface 
between parallel system components involves synchronization and exchange of data. 
Rules for communicating processes are established by protocols, which control order
ing of selected events. STEPS distinguishes nodes in a system control flow graph as
sociated with internal actions of individual processes from nodes associated with ex
ternal actions that deal with interprocess communication (Szczerba and Wiszniewski, 
1995). Relative ordering of nodes associated with internal actions belonging to differ
ent threads of control is irrelevant for STEPS, as these objects are truly independent. 
On the other hand, external actions dealing with interprocess communication involve 
a relatively small subset of events. Moreover, for any single external action (access 
point) in any process there is one related protocol class; any such action can always be 
associated through its protocol class with a specific set of external actions (access 
points) of other system processes. 

The main feature of our model and the tool is the independence of communication 
events. It has been established and maintained by STEPS using object-oriented tech
nology. It can involve either top-down design of a parallel program control flow 
structures using objects provided by the model before generating any actual code 
(Krawczyk and Wiszniewski, 1995), or reverse engineering of the existing code using 
static concurrency analysis to get the model objects, what in the case of this paper. 

Actions associated with the same communication event form a group ordered by 
the corresponding protocol and have to ensure that the transfer of data objects be
tween processes follows semantic rules of the relevant communication actions. Ac
tions from different events are independent, since they manipulate different data ob
jects associated with separate access points in component processes. Therefore, com
munication events cannot influence each other's internal ordering of actions. The same 
applies when internal actions are interleaving with external actions; internal actions 
are able to 'engage' some control flows in particular communication events, but cannot 
affect ordering of actions 'within' the individual event protocol. Owing to this, numer
ous combinations of interleaving external actions that belong to different events, as 
well as combinations of interleaving external and internal actions are in most cases 
irrelevant for analysis supported by STEPS. This has been shown formally using 
Kleene's technique ofA.-automata (Szczerba and Wiszniewski, 1995). 

Encapsulation of protocols eliminates the problem of combinatorial explosion of a 
parallel system viewed as a collection cooperating FSM's, since it constitutes for 
STEPS a sum of FSM's representing component processes, rather then their product; a 
sum machine is much simpler to analyze and understand than a product machine since 
the former has the set of states of smaller cardinality, i.e., as of the union of compo
nent processes' states rather then the Cartesian product of such sets (Szczerba and 
Wiszniewski, 1995) . 

The model adopted by STEPS aims to retain the intuitive simplicity of flow-graphs, 
to capture the ability of Petri nets to represent multiple flows of control, and to pro
vide an FSM-like mechanism for ordering program statements related to state transi
tions (Krawczyk and Wiszniewski, 1995). 



www.manaraa.com

Interactive testing tool for parallel programs 

Control flow of active processes can be represented in C++ by specially defined 
objects forming the Token class: 

class Statement; 
class Token ( 

}; 

Statement condition; II up-to-date path condition 
Statement *memory; II up-to-date path memory 

Individual Token objects advance through a parallel program and collect information 
that is specific to the path being followed. A vector (array) of all Token objects rep
resents a global state of a parallel program. 

A parallel program is modeled by multi-flowgraph G(N,A) using graph nodes that 
form a specific hierarchy of objects N allowing parallel control flow tokens. Any ob
ject from N has in general multiple entries and multiple exits connected by arcs from 
A, as specified in Figure 1. We schematically represent there each Node object by an 
icon, as well as specify the relevant class hierarchy using the C++ notation. 

Nodes may be connected to one another. i.e., any exit of one Node object may be 
connected to any entry of another or the same Node object; we mark this in our model 
by labeling each Node exit with the Action labeling the respective entry to which 
this exit is connected. Labels of entries are unique, i.e., there are no two entries with 
the same label at any Node object. In general there is no precedence of connected 
nodes, as one node may be connected to many nodes by the respective entries (exits). 
Entries of a single Node object may be associated with different control flow tokens, 
therefore each such object may be entered in parallel by more than one token. Token 
objects, after leaving one Node object may spread over the system and visit many 
Node objects in parallel. Note the straightforward relationship of our model to the 
Petri net model: independent tokens represent multiple control flows, nodes are tran
sitions while node entries and exits are places. 

Visiting of Node objects by control flow Tokens in a sequential program graph 
normally represents execution of program statements (processing nodes) or evaluating 
predicates (decision nodes). Figure 1 extends this concept by specifying the respective 
programming constructs as either Assignment or Condi tiona! objects, which 
encapsulate two specific types of Statements. One is an 'expression-statement', 
and the other is a 'predicate-statement'; they are any correct (language syntax specific) 
string of characters, and they may involve identifiers representing program variables 
as well as function calls. 

Assignment and Conditional objects allow for multiple control flow tokens 
to enter and/or exit their instances in parallel. At each entry of such a node incoming 
token causes the evaluation of the respective expressions (predicates). Note that a 
node entry that is not connected to any node exit represents a creation (instantiation) 
point of some process. Similarly, a node exit that is not connected to any node entry 
represents a termination (destruction) point of some process. Instantiation and de
struction points may also involve evaluation of relevant expression or predicate 
Statements. 

101 



www.manaraa.com

102 Part One Research Papers 

If Assignment or Conditional objects do not involve multiple control flow 
tokens, then they correspond to ordinary nodes of sequential control flow graphs, i.e., 
they belong to Expression or Decision objects. 

Multiple control flow tokens constitute just one feature of G(N,A). Another feature 
is the interaction of tokens at selected points of component programs, what is due to 
communication statements. Owing to this feature, any Node object that involves 
parallel tokens can provide internal 'processing' of incoming tokens in order to deter
mine what particular tokens can exit the node. Therefore such a class of nodes has 
properties of the Conditional object. It also has properties of the Assignment 
object, since interaction of tokens may result in some data objects (values) being 
transferred between processes. This is handled by the CornrnunicationEvent class 
of node objects. Internal processing of control flows is performed by finite state pro
tocol machines, or FSM objects, which determine a specific order of executing com
munication actions involved in the corresponding event. 

class Vector: class Action; 
class Node { 

public: 
int N; II no of entries 
int K: II no of exits 
Action *entries; II entries labeled. by current actions 
Action •exits; II exits labeled by successor actions 

Vector initial; // entries holding incolldng tokens 

Vector final; II exits holding outgoing tokens 

class Stat ... nt: 
class Assignment: public Node I 

public: 
Stat..ent *expression; // assignments at exits 

class Stat-nt: 
class Conditional: public Noda { 

public: 
Stat-.ent *predicate: II predicates at exits 

class Expression: public Aasigmnent { 
public: 

conat static int NzK•l; 

class Decision: public conditional{ 
public: 

const static int N•l: 

class PSM; 
class CocmJUnicationEvent: public Conditional. public Assignment ( 

private: 
PSH ••machines II array of lists of machines at each entry 

Figure I Node objects used by STEPS. 

Based on the classification of nodes developed so far one can view a set of se
quential programs running in parallel as a set of interconnected Node objects. Paths 
through G(N,A) form Thread objects representing individual processes: 



www.manaraa.com

Interactive testing tool for parallel programs 

class Thread { 
private: Node *nodes; II array of Node pointers 

} ; 

A parallel system can be finally constructed ftom a set of Thread objects as: 

class MultiThread { 
private: Thread *system; II array of Thread pointers 

} ; 

2.1 Levels of representation 

103 

The model in Figure 1 enables analyzing parallel programs at three different levels. At 
its highest level G(N.A) is similar to Lamport's space-time diagrams (Krawczyk and 
Wismiewski, 1995; 1996), with vertical lines representing processes and horizontal 
arrows representing communication events. At its lowest level G(N.A) groups sequen
tial program statements into graphical segments. The middle level is similar to the 
Petri net model, with a hierarchy of transitions (Node objects) shown in Figure 1. 

STEPS views parallel program execution as progressing of independent Token 
objects along paths containing Node objects. Token objects visit Communica
tionEvent objects to be 'processed' by protocol machines encapsulated by individ
ual instances of the latter. Encapsulated machines determine for all Token objects 
'arriving' at entries of the related CommunicationEvent object what Token ob
jects are allowed to leave the latter and at which of its exits. 

2.2 Analysis of events 

Representation levels in STEPS enable event-driven testing at the top-most level, as 
well as testing and symbolic debugging at the program statement level. Careful analy
sis of application protocols in various parallel programming environments indicates 
that the nwnber of different protocol machines is reasonably low. For example, typical 
network oriented application platforms based on message passing, like TCPIIP 
(Comer, 1991) or PVM (Geist, et al., 1994) distinguish just two types of communica
tion statements for sending: one is point-to-point, when a single process sends a single 
message to another single process, and another is broadcast, when a single process 
sends a single message to a group of processes. Communication statements for send
ing may be either blocking or nonblocking. The blocking send forces sender to wait 
until receiver is ready to read a message being sent, while the nonblocking send puts a 
message to some buffer regardless of the state of the receiver. TCPIIP provides both 
types of the send communication statement, while PVMjust the nonblocking one. 

There are also two types of communication statements in TCPIIP and PVM for re
ceiving, either blocking or nonblocking mode. In any mode, a receiver may want to 
receive a message ftom a specific sender or just any sender. 

This defines three basic classes of application protocols: one-to-one, many-to-one, 
and one-to-many. If we distinguish blocking and nonblocking send statements, as well 



www.manaraa.com

104 Part One Research Papers 

as blocking and nonblocking receive statements there are twelve kinds of protocol ma
chines in total. 

A protocol macbine has one initial state, one final state and one internal state per 
each relevant pair of 'matching' send-receive communication statements. Such an in
ternal state is simply labeled as 'communication engaged' and used by STEPS for re
porting on the internal status of the related interprocess communication for the exter
nal observer. The set of internal states of all protocol machines encapsulated by the 
related instance of the ComrnunicationEvent object determines all possible se
quences of communication actions constituting an event under test. 

The relationship between predicates and expressions of the Communication
Event inherited from the Conditional and Assignment objects, and states of 
the relevant set of protocol machines is used by STEPS to facilitate standard symbolic 
interpretation. A predicate Statement associated with each respective exit of any 
ComrnunicationEvent object is a Boolean function on a vector indicating anini
tial state of the Node object; it yields 'true' for its related exit if for a given vector of 
active entries a respective token is allowed to proceed to that exit. An expression 
Statement, also associated with selected exits of ComrnunicationEvent ob
jects is a conditional assignment with a predicate being a Boolean function on a vector 
indicating a fmal state of the Node object. It simply tells what is a data value being 
transferred from the message buffer upon exiting a particular Node object in a given 
state. Transformations of the Node object's state from the initial to the final (state) 
vector is determined by internal connections of a particular FSM object. 

When Token objects visit Node objects they follow specific 'paths' through the 
related Multi Thread object. Symbolic interpretation of a path through the latter 
produces an expression determining relevant input points and timing relations be
tween interacting tokens at respective nodes along that path. Such a 'path expression' 
constitutes a TEsting Scenario Script (TESS) that provides a basis for deterministic as 
well as controlled run-time code execution. 

3 TESTING SCENARIOS 

The model of parallel programs used by STEPS allows us to determine different test
ing scenarios. Testing scenarios may refer to the entire parallel system under test or 
just its fragments forming test windows. A test window is defined simply as a set of 
ComrnunicationEvent objects between a top and bottom segments of a window 
frame. Top and bottom segments indicate communication events that occur upon en
tering and leaving a window by a specific set of parallel processes. A test window 
width defines processes being involved in a window. 

The idea of test windows is based on the standard notion of breakpoint traps used 
by traditional debuggers. Processes of interest are expected to reach eventually a win
dow top, and then proceed towards its bottom. While inside a window, processes may 
be stopped, their variables inspected, statements executed in a step-by-step mode, etc. 

STEPS distinguishes three levels of representation of parallel programs, which are 
respectively the graph representation level, the source text level and the run-time 
code level. Figure 2 outlines schematically the relationship between these levels and 



www.manaraa.com

Interactive testing tool for parallel programs 105 

illustrates how STEPS can merge three basic categories of testing characterized be
fore. By introducing symbolic interpretation of a program source text at the abstract 
graph representation level the tool enables interactive path analysis and selection of 
input points, i.e., utilize PTDG. Paths selected by the user have TESS scripts gener
ated automatically by STEPS from the underlying program source text level; TESS 
scripts are the input to the run-time code representation level, i.e., utilize DSS. Finally, 
STEPS utilizes STG by visualization of the run-time code execution at the graph rep
resentation level and on-line mechanisms for user interaction from that level back to 
the run-time code level. 

11WJ1t rtprtJ~marron 

1/1 1)9 

Figure l A relationship between abstraction levels in STEPS. 

Figure 2 shows how important it is to find correspondence between levels of a parallel 
program representation. STEPS assumes that static and dynamic analysis may be done 
in different orders. We have created functions capable of distinguishing lines and their 
corresponding states in the runtime-code. These functions will be characterized briefly 
in the next Section. Below we want to emphasize the need for test windows and their 
representation at various levels. We can define three types of testing scenarios: 

I. A set of windows in a source (run-time code) to check on a given sequence of 
events; sizes of windows can be arbitrary, but in many cases users may want to 
restrict windows to single vectors of breakpoint traps, i.e., windows of height= 0. 

2. Single (and independent) windows to check on communication between selected 
processes; in this case users may work interactively to attempt various input (test) 
points for the assumed order of communication events. 

3. Blocks of code (sequential nodes) to check on sequential parts of parallel pro
grams; these operation involve symbolic debugging using standard tools, like the 
GNU 'gdb' debugger. 

4 THE STEPS TOOL 

The STEPS tool performs a number of processing activities including retrieval of in
formation from the program source code in order to construct it's respective multi-



www.manaraa.com

106 Part One Research Papers 

flowgraph, visualization of a program control structure enabling users to specify test 
windows, symbolic interpretation of program paths assisting users in designing testing 
scenarios, and dynamic execution of tests enabling interactive debugging. 

There are four major functional components presented schematically in Figure 3: 

• A test window user interface (WUI), to interact with static analysis of a program 
text, selection of program paths and their dynamic execution. 

• A static analyzer of PVM text (SAPTE), to identify communication events using 
reachability analysis and determining quality parameters. 

• An interactive data test generator (IDA TEG), to determine execution conditions of 
paths and to assist users in finding suitable data for program execution. 

• A testing scenario execution manager (TESEM), to define and execute testing sce
narios at different levels of representation (multi-flowgraph or sequential blocks). 

_5TEPS ___ --- ·---------~--------------------------------.------------------------------

Figure 3 An overview of STEPS architecture. 

Activities of these four subsystems', kinds of information being passed between 
them and related information repositories are shown schematically in Figure 4. It can 
be seen that there are two kinds of input information required by STEPS: a program 
input source code and user commands. An initial user command is to start static con
cu"ency analysis of the program input source code. As a result of this analysis three 
kinds of information are retrieved from the program text: a structure of component 
processes' graphs, respective sets of communication actions identified as communica
tion events, and event ordering relations. This information is stored for further proc
essing in three respective repositories: a collection of component graphs, an event ta
ble, and a reachability tree in a form of state transition graph. Information retrieved 



www.manaraa.com

Interactive testing tool for parallel programs 107 

by static analysis is used by interface WUI to display a multi-flowgraph structure 
needed by users for preparing testing scenarios. This requires information about all 
node connections and communication event nodes. Based on this information user can 
outline a desired window frame, that provides a basis for window definition activities. 

process global dala objects 

replay dala 

Figure 4 Data flow diagram of STEPS. 

Window defmition activities require fmding relevant information on internal control 
structures of component process graphs, and determining from the structure of com
munication events selected for the window what are the processes going through it. 
Since window framing must avoid the probe effect, i.e., window processes are not al
lowed to communicate with other processes not going through the window, another 
activity, reachability analysis, is needed. Reachability analysis checks for selected 
nodes whether respective states specified by a state transition graph can be reached 
within a window. Corresponding state transitions are provided by reachability analysis 
for activities following window defmition, i.e., to be utilized in path selection. The 
latter activity results in path specification to be analyzed for test data selection. Test 
data selection involves analysis of statements along specified paths and their opera-



www.manaraa.com

108 Part One Research Papers 

tions on relevant process data objects; these objects are global from the viewpoint of 
individual paths contained in a test window. Test data are associated by TESS scripts 
with specific program variables in a form of breakpoint traps that specify what vari
ables and at which points of execution have to assume specific values, and what these 
values should be. Breakpoint statements are considered to be minor breakpoints, since 
they mark specific points of execution at the program source text level, as opposed to 
major breakpoints that mark monitoring points at the graph representation level and 
are determined by window frames. Major and minor breakpoints, as well as associated 
test data are stored in the breakpoint data table being a repository used by test man
ager activities. Test manager receives step specifications from WUI and initiates exe
cution of a program code under test using information stored in the breakpoint data 
table; this information specifies probes that have to be inserted into the run-time code. 
During program execution trace data are collected and stored in the log repository. 
Upon completing a step the program execution is suspended and the relevant step re
port is returned to WUI. Test manager may either initiate the next step or replay the 
previous one; in the latter case it retrieves respective replay data from the log. 

5 CONCLUSIONS 

STEPS implements an object oriented model that enables analysis and design of paral
lel programs to make them testable. This model provides a generic representation of 
any parallel program control flow structure based on message passing and includes 
multiple threads of control to capture natural parallelism of program components, 
external and internal actions to distinguishing relevant sequences of component proc
esses' actions from irrelevant ones, and communication events to provide the main 
structuring concept for interprocess communication. The key feature of this model is 
its capability to encapsulate communication actions in objects constituting disjoint 
communication events, to provide well-defined access points to parallel processes, 
and to enable flexible representation of any realistic communication protocol. 

A testable representation of a parallel program is provided by STEPS at several 
levels, including test windows, lines of source code text and execution states of a run
time code. Owing to this any structural testing strategy that uses the notion of a pro
gram control flowgraph can be utilized in developing testing scenarios; it involves 
designing and preparing tests, as well as evaluating test coverage. 

The natural parallelism and independence of objects in G(N,A) is suitable for rapid 
prototyping of a program design: based on a source code one may attempt to build an 
abstract program model using static analysis and then generate a new, higher quality 
program. Such an extension of STEPS is currently under development using Smalltalk 
and C++. 

6 REFERENCES 

Comer, D. (1991) Interne/working with TCP/IP Vol. I: principles, protocols, and ar
chitecture. 2nd ed., Prentice-Hall. 



www.manaraa.com

Interactive testing tool for parallel programs 109 

Damodaran-Kamal, S. K., and Francioni, J.M. (1994) Testing races in parallel pro
grams with an OtOt strategy, in Proc. of the 1994 International Symposium on 
Software Testing and Analysis, Seattle, WA, USA, 216-227. 

DeMilio, R.A. and Offutt, A.J. (1991) Constraint based automatic test data generation. 
IEEE Trans. on Software Eng., 17(9), 900-910. 

Geist, A., eta!. (1994) PVM 3 user's guide and reference manual. Oak Ridge National 
Lab, Oak Ridge, Tennessee, 1994. 

Hoffman, D.M. and Strooper, P. (1991) Automated module testing in Prolog. IEEE 
Trans. on Software Eng., 17(9), 934-943. 

Korel, B. (1990) Automated software test data generation. IEEE Trans. on Software 
Eng., 16(8), 870-879. 

Krawczyk, H. and Wiszniewski, B. (1995) Design for testability of parallel programs, 
in Proc. of the 4th Software Quality Conference, Dundee, UK, 1-10. 

Krawczyk, H. and Wiszniewski, B. (1996) Object oriented model of parallel pro
grams, in Proc. of the 4th Euromicro 96 Workshop on Parallel and Distributed 
Processing, Braga, Portugal. 

Lutz, M. (1990) Testing Tools. IEEE Software 7(3), 53-57. 
Maurer, P.M. (1990) Generating test data with enhanced context-free grammars. IEEE 

Software, 7(4), 50-55. 
Szczerba, A. and Wiszniewski B. (1995) A tool for testing communication events in 

TCPIIP environments, in Parallel Programming: State of the Art Perspective 
ParCo'95, (ed. E.H. D'Hollander, G.R. Joubert, F.J. Peters, D. Trynstram) Elsevier 
Science, 1996. 

Tai, K.-C., Carver, R.H., and Obaid, E.E. (1991) Debugging concurrent Ada programs 
by deterministic execution. IEEE Trans. on Software Eng., 16(8), 897-915. 

Taylor, R.N., Levine, D.L. and Kelly, Ch.D. (1992) Structural testing of concurrent 
programs. IEEE Trans. on Software Eng., 18(3), 206-210. 

Therenod-Fosse, P. and Waeselynck, H. (1993) STATEMATE applied to statistical 
software testing, in Proc. of the lst ACM Symposium on Software Testing and 
Analysis ISSTA'93, 99-109. 

Winter, S. and Kacsuk, P. (1994) Software engineering for parallel processing, in 
Proc. 8th Symp. on Microcomputer and Microprocessor Applications, Budapest, 
Hungary, 285-293. 

7 BIOGRAPHY 

Henryk Krawczyk is a Professor in Computer Science at the Technical University of 
Gdansk. Current research interests include dependable computer systems, software 
quality assurance and metrics, parallel and distributed processing. Member ofiEEE. 

Bogdan Wiszniewski is an Assistant Professor in Computer Science at the Technical 
University of Gdansk. Current research interests include testing of sequential and 
parallel computer software, object-oriented programming and computer networking. 
Member of ACM. 



www.manaraa.com

10 
Cerberus - a tool for debugging 
distributed algorithms 

F. Carter and A. Fekete 
Department of Computer Science, University of Sydney 
Madsen Building F09, University of Sydney 2006, Australia. 
email: fekete@cs. su. oz. au 

Abstract 
Distributed applications are hard to program. They are particularly prone to subtle race 
conditions, deadlocks, or similar errors in the underlying distributed algorithm. This paper 
describes a tool which can assist the designer in debugging a distributed algorithm early 
in the software lifecycle. The tool takes a high-level abstract description of the algorithm, 
and an even more abstract requirements specification; it simulates an execution until a 
discrepancy arises between algorithm and specification; it then assist the developer to 
explore backwards and forwards through the execution till the error is understood. 

Keywords 
Distributed programs, debugging, simulation, formal methods 

1 INTRODUCTION 

Programming a distributed application is even more difficult and error-prone than writing 
other software systems. One source of difficulty is the lack of programmer experience with 
the languages and tools used in coding: the domain is relatively new, and standards are 
still developing, so different systems are incompatible and many unnecessary obstacles 
are placed in the programmers' path. Whole books have been written to assist with 
these arcane details (Stevens, 1990). Distributed applications however differ from tasks 
in other domains in that even before the coding phase is reached, the design phase is 
often affected by fundamental algorithmic errors, which are hard to detect, and are not 
amenable to being fixed with small corrections. For example, in a sequential program, a 
common mistake in algorithm design is an "off-by-one" loop, which fails to check the last 
element of a sequence; this is easily detected by testing with a range of extreme inputs, and 
is fixed by changing the termination test in the loop. In contrast, a distributed algorthm 
may have a "race condition", where the error is revealed only when a particular pattern of 
message delays occurs, and the correction requires a completely new approach. The greater 
difficulty of design for distributed algorithms is clearly evident in the high rate of errors 
among papers written by experts and accepted in prestigous journals. As as extreme case, 
Knapp (1987) discusses the sad sequence of incorrect algorithms for detecting deadlock. 



www.manaraa.com

Cerberus - a tool for debugging distributed alogrithms 111 

Because a distributed application is so vulnerable to errors in algorithm design. we 
believe that the development of these applications would benefit from a tool that allows 
the debugging of the algorithm itself, in a rather abstract early form. The designer should 
be able to explore the executions of the underlying algorithm intended for their system; 
only once a sound design is chosen would coding take place. This paper describes a tool 
of this sort. It is called Cerberus and a first version has been implemented. 

It is important for the reader to distinguish the sort of tool we describe, which is used 
for debugging a distributed algorithm at the design phase, from those which can assist 
in debugging a deployed distributed system after the coding is completed. The latter 
sort of tool must itself be a distributed program, collecting information at multiple sites 
in a network, and attempting to determine whether or not certain global conditions are 
satisfied. Because remote information is always out-of-date, a debugger for distributed 
systems is very hard to build. Babaoglu and Marzullo summarise the theory behind these 
systems in chapter 4 of the book edited by Mullender {1993). 

The view of software development in this paper is based on top-down refinement: the 
designer starts from a requirements specification of the service the system is expected to 
provide to its clients. As described by Fekete {1993), this service specification will gener
ally be presented as a global, abstract, state transition system. Next the designer decides 
on a fundamental algorithm that will provide this service. For example, the algorithm 
might involve a token traversing the network, or it might be based on a replicated state 
machine (Schneider, 1990). This basic algorithm is described as a collection of separate 
abstract state transition systems, one (for each site in the network) representing the part 
of the system at one site, and others (such as buffers) which provide inter-site communi
cation. In Cerberus, both requirements specification and proposed distributed algorithm 
are presented in a particular syntax which is based on a semantic model called Input
Output Automata (Lynch and Tuttle, 1989), which has been extensively used in research 
papers for describing distributed algorithms. The Cerberus too) is used to detect errors 
in the basic algorithm. Once no more errors are discovered, and the designer is confident 
in the correctness of the algorithm, the individual site components can be further refined 
to efficient code in a conventional programming language. This requires converting the 
state-transition description used by Cerberus to flow-of-control in a language like C; one 
must also replace abstract data structures like sets by efficient implementations. 

The top-down style of development supported by Cerberus is in contrast to the more 
common bottom-up building of distributed applications, where the designer takes indi
vidual components that already exist, and combines them in different configurations to 
meet various goals (perhaps writing additional clients to make calls on the components). 
This bottom-up style of composition is expected by recent standards such as CORBA or 
Microsoft's OLE Component Object Model; it is also supported by prototype tools such 
as the Software Architect's Assistant (Ng et al, 1995). 

Non-determinism is a key feature of distributed algorithms, and a central reason for the 
frequency of major errors in their design. Even though each node in the system is com
pletely predicatble in its responses to messages, the whole system has a very large set of 
executions, each corresponding to a particular pattern of unpredicatable message delays. 
Since the system has no control over these delays, an algorithm is considered correct only 
if every possible execution produces the desired outcomes. The core of the Cerberus tool 
is to simulate one execution of the distributed algorithm (if no error is detected in this, 
another execution is simulated). The tool allows the designer to control the execution 



www.manaraa.com

112 Part One Research Papers 

directly, by repeatedly selecting the next action to occur from among those enabled at 
the current state; alternatively the execution may develop without the designer's inter
vention, with appropriate randomisation controlling the pattern of message delays etc. 
As the algorithm's execution is simulated, Cerberus also follows the transitions in the 
requirements specification. An error is detected when the algorithm takes an action not 
allowed in the requirement (this violates a safety condition) or when no action is possible 
by the algorithm at a time when the specification can produce output (this is deadlock). 
The organisation and interface of Cerberus has been inspired by a previous simulation 
tool for the Input/Output Automaton formal method, called Spectrum (Goldman, 1990). 

The key contribution of Cerberus, which distinguishes it from general simulation tools, 
lies in what happens after an error has been identified (that is, once an incorrect execution 
has been found). Cerberus allows the designer to explore the execution history, trying 
to pin down the part of the algorithm that needs fixing. Usually the algorithmic error 
is in a step that occurred long before the system finally took a step not allowed by the 
specification. For example, the detected step is often triggered by the arrival of a particular 
message at a node which is in a particular state; however the error might be in the decision 
to send that message, or in the decision to enter the particular state (or the problem might 
lie further back, in the sending of the message that caused the node to enter that state). 
Cerberus provides the ability to jump backwards and forwards through the execution that 
has revealed an error: for example, one can move to the most recent step of a given node. 

This paper shows how Cerberus is used. In Section 2 we explain the language used to 
represent both the requirements specification, and the distributed algorithm. In Section 3 
we explain the facilities provided by the system and how they are implemented. In Section 
4 we work through a (contrived) example. In Section 5 we summarize our conclusions. 

2 DESCRIBING TRANSITION SYSTEMS 

The intellectual foundation for Cerberus is the Input/Output Automaton formal method 
(Lynch and Tuttle, 1989) invented by Lynch and her colleagues as a semantic model used 
in presenting and verifying distributed algorithms. The framework has been found to be 
widely applicable, with simple extensions to deal with time-dependent algorithms, shared 
memory algorithms, several different types of modularity, and even impossibility proofs. 
The formal method is based on representing each component as a state-transition system, 
with potentially infinite state space, and where transitions are named and also classified 
as inputs, outputs or internal steps. A collection of components can be composed, with 
synchronisation provided by the fact that identically-named transitions must be taken 
simultaneously in all components. 

As described by Lynch and Tuttle (1989), the Input/Output Automaton method is 
semantic; the states and transitions may be described using all the techniques of mathe
matics. In a software tool such as Cerberus, it is essential that a fixed syntax be used to 
present an automaton. This section describes the language we have chosen. As an exam
ple, we give the code in Figure 1 which models a unidirectional error free communication 
channel. Further examples written in the language are found in Section 4. 

Classes of Automata: In representing a distributed algorithm, it is usual to have many 
similar automata in the system; commonly, the processing at each node follows the same 
principles (which indeed apply no matter what the network topology). Thus in Cerberus, 



www.manaraa.com

Cerberus - a tool for debugging distributed alogrithms 

typedef HsgType 
typedef PktType 
typedef PktQueue 

tup(from,val: integer;); 
tup(type : integer; msg : MsgType;); 
seq of PktType; 

automata channel() 
state_vars 

buffer : PktQueue; 
initial buffer :• seq(); 
begin 

end 

input send(channel : integer; pkt: PktType;) 
restrict 

channel == AutomataNum; 
begin 

buffer :• buffer+ seq(pkt); 
end 

output receive(channel : integer; pkt PktType;) 
restrict 

channel == AutomataNum; 
pre 

if 

fi; 
begin 

(#buffer!= 0) -> pkt == buffer[l]; 

buffer:= buffer[2 .. #buffer]; 
end 

Figure 1 An 1/0 Automata class to model a communication channel 

113 

we describe a generic template which we call a class of automata, and then we simulate an 
algorithm in which many instantiations of this class coexist, in a particular configuration. 

The class name is declared in a similar method to many programming languages syntax 
for declaring a procedure or function, i.e an identifier with a set of typed parameters 
enclosed in brackets. There is also an implicit argument to the automata that does not 
need to be declared, this is 'AutomataNum' which provides a unique integer identifier for 
each automata that is included in the final simulated system. In the example above, this 
implicit parameter is the only parameter. 

State: The Input/Output Automaton formal method allows an arbitrary, possibly infi
nite, state space. In Cerberus, the state space is always given as a Cartesian product, based 
on a collection of named, typed, state variables. Each state of the automaton is described 
by giving a particular value of the correct type to each variable. Because Cerberus aims 
to support debugging of algorithms early in the lifecycle, it is important to allow them 
to be described in a rather abstract style, more common in specification languages than 
in common programming languages. Experience in describing many algorithms shows the 
usefulness of abstract, complex data types, such as a set of sequences of pairs, each of 
which has a string and a set of integers. To cater for these needs, three type constructors 
were include in the language: sequences, sets, and tuples. In the example above, there is a 



www.manaraa.com

114 Part One Research Papers 

single state variable called buffer; its value is a sequence of tuples. Each constructed type 
has the usual operations: for example seq() denotes the constant empty sequence, and 
#v denotes the number of entries in the sequence which is the value of variable v. 

Transitions: In the formal method, an automaton can change between states in discrete 
steps. There is a transition relation that defines the allowable steps. There are names 
given to the possible steps (these names are crucial in defining the way automata in
teract). Each name is refered to as an action, and each action is classified either as an 
input (meaning that it is controlled by the environment rather than by the automaton 
itself), as an output (under the autonomous control of the automaton, and able to be 
detected by the environment), or as internal (under autonomous control, but unable to be 
detected by other components). In the formal model, each action may label an arbitrary 
set of transitions. However, it is normal for many related actions to all be used to label 
transitions which can occur in similar states, and for which the state after the action 
is determined as a function of the state before it. In Cerberus, we define parameterised 
action templates. The possible values of the parameters are of course limited by their 
types, but the algorithm designer can also provide an extra restriction. For example, the 
code of Figure 1 shows that each channel automaton has many input actions, one for 
each possible value of pkt; however, the first parameter in the action name is fixed to be 
identical to the AutomataNum of this component. The restriction clause is not arbitrary: 
an action class parameter may only be used on the left hand side of an equality operator 
or the left side of the "element of" operator (written with the [= symbol). This allows 
the simulator to efficiently decide which parameter values should be considered. 

It is fundamental in the formal method that input actions can occur at any time as they 
are controlled by the environment rather than by the automaton. However output and 
internal actions are under local control, so these actions have a precondition, introduced by 
the pre keyword, which is a series of boolean expressions*. We say an action within a class 
is enabled when the conjunction of expressions in this section are true. Action parameters 
can be mentioned in this section, under the same limitations as in the Restrict section; 
these two sections jointly decide which actions within an action class will be allowed to 
occur in a given state. 

When an action occurs, the component must change state. In Cerberus, the new state 
is determined by executing a body of code enclosed begin and end keywords. This code, 
through assignments, defines the way in which the state variables are to be updated to 
move from the current state to the next state when an action from this class is executed. 
Within the code, one can refer to any state variables, to the parameters of the action 
template, and also to local temporary variables (these are meaningful only within the 
code, and they do not keep their value in the automaton state for use in later transitions). 
The code should alter values of local or state variables, but not of parameters of the action 
and automaton. The code may also contain assignments which are executed conditionally; 
we use the syntax if boolexp -> code boolexp -> code ... fi. The meaning is that each 
boolexp in turn is evaluated; whichever is the first that evaluates to true; the corresponding 
code is executedt 

*For convenience in translating existing algorithm models from the research literature, which are written 
without specific syntax, we provide syntactic sugar for implication written as if boolexp -> boolexp fi. 

tThere is a deceptive similarity between this syntax and that used for implication in preconditions; this 
design error should be corrected in future versions. 



www.manaraa.com

Cerberus - a tool for debugging distributed alogrithms 115 

Composition: A distributed algorithm will be represented as an interacting collection of 
automata. Once the automata classes necessary to construct the system to be simulated 
have been defined and compiled, instances of these classes need to be created so that a 
complete distributed system can be simulated. The number and type of each automata 
within the simulation is defined in a configuration file. This file also contains values with 
which to instantiate the class parameters for each automaton in the system. 

In the formal method, it is the action names which determine whether or not two com
ponents in a system can influence one another. This carries over to Cerberus, in contrast 
to systems like the Software Architect's Assistant (Ng et al, 1995) where each component 
uses local names and explicit binding is done in a configuration language. In Cerberus, 
nodes which communicate synchronously can be created by having action names which 
contain parameters which identify the neighbors; the values of the parameters are set in a 
configuration file, so the instances which are intended to communicate synchronously are 
given matching action names. 

Asynchronous communication is expressed by introducing a channel automaton between 
each pair of neighbours: Each node has as a parameter a set that contains the unique 
identifiers of all of the communication channels upon which it is to send messages. The 
send actions that place messages on the communication channels contain one of the 
identifiers from this set as a parameter, the other parameter is the message to be sent. 
Later the channel interacts synchronously with the other node in a receive action, where 
again the action in the destination node is parameterised with the identifier of the channel. 

3 OVERVIEW OF THE CERBERUS TOOL 

The tool includes a translator to transform the description of each automata class into a 
C source file. The C source file is then compiled to an object file. Once all of the automata 
classes required for the simulation have been compiled they are linked with the simulator 
and a configuration file. The configuration file specifies the number of instances of each 
automata class in the simulation and gives values to the parameters of the automata 
instances. 

Specification: To specify the required (correct) behaviour of the system, an automaton 
that contains the same interface as the implementation must also be provided. The spec
ification automaton models the correct behaviour of the system by only enabling those 
output actions that correspond to the correct results being passed to the users of the ser
vice. The specification automaton should contain the input and output class actions used 
by the algorithm under investigation, when it interacts with the clients. The specification 
automaton should be able to model the correct behaviour of the system regardless of the 
number of users of the service being provided. Hence, a set that contains the identifiers 
of each of the users of the service will almost always be a parameter for this automaton. 

It is important to remember that the specification automata should contain all the 
actions that communicate with the client regardless of the fact that these actions may be 
contained in components that are physically distributed from one another. This style of 
specification, with a global automaton to characterize the desired service, is discussed by 
Fekete (1993). 

Simulation: Once Cerberus is running, with linked code for the algorithm's components 
and for the specification, the first activity is to generate one of the possible executions 



www.manaraa.com

116 Part One Research Papers 

\\1( IIU<.IoL•I7.11J l;.!1,:41.J.,13Uili 171,. ,-.ll'l~Ut""-1 n...-.,\1( -"t17.12.0U 
\\1( Clfi ;S.G,7Jf.9:l it'(n<:Utod r<:\\ll .l'i>U7.i20n ri 

> \\IC .- h(>uu2 .71 "'"' .. r utoP<I ,......,\1(',,u7J2.011 

_ ... _ 
AMCollent(2.7) OUCNtad mdMCu1('1(.l,1)) 

- > AMCnoclo(7.(13,12M04,15).(18,17))) .. ooutad md 
AMC:(I8~5,11.1,1JI)) oxecutad ....u.!Cas!(7 (.l,l)) 

AMC.U nl(0.5) - sndMCut(S~O.Dl) 
AMCcllonl(0.5) - lnoCowo'*o{) 
AMCclloniOJI) - mdMCasl(S.O.Oll 
AMCallonl(l.lll - tncCouftleo{) 
AMCollonl(2,7) - ondMCaol(7(.l.2l) 
AMCcllonl(2.7) - lnoCowo,..o{) 
ANColloni(3JI) - lftcCoun'*o{) 
Alo!Ccllonl(4.11) • ondMCo<t(ll~4.0)) 
AMCcllont(4.9) - lncCoun,..o{) 
AMCnodo(SA-1.·11~00,11),(12.13))) - rc•Mea..(S.a,o)) 
AMCnodo(S~-1.-1),((10,11),02.13))) - ..,.d(IWQ.O))) 
AMCnoclo(7 ,(12.12)~04.15).(18,17))) - f'C\'MCas!(7 (.l,O)) 
AMCnoclo(7.(13.12l,(04,15W8,11))) ....d02,(0.(2.1))) 

Figure 2 Cerberus Main Window 

of the algorithm being modeled. The execution is developed step by step. At each step, 
the possible enabled actions are calculated. To be more precise, the system considers 
each action template which is an output or internal action of any component; it decides 
which (if any) values of the parameters in that template make both restrict clause and 
precondition true. Then the user may choose one of the enabled actions (they are displayed 
in a popup window, seen in the lower right in Figure 2); alternatively, the next action may 
be selected randomly from those enabled . Whichever mechanism is used, once an action 
is chosen, it is compared with those that the specification allows: an error reported if the 
action is not appropriate in the specification. 

Once an action has been selected and determined not to cause a violation of the speci
fication then the simulation can take the corresponding transition. This amounts to per
forming the assignments in the effect code, with the action parameters instantiated to the 
values that enable the action. Also, if any other components have the same action class 
name as input, and the chosen parameters satisfy the corresponding restrict section, 
then each of these components also executes the transition determined by its own code. 
The specification also takes a transition if that is appropriate. 

When there are no enabled locally controlled actions within the automata that are mod
elling the implementation, then there are two possibilities. If the specification automaton 
contains enabled actions then an error is reported. This situations indicates deadlock has 
occurred: the specification automaton has interactions that are unfinished, however the 
algorithm is unable to continue. On the other hand, if the specification automaton also 
contains no enabled actions then a valid end state has been reached and the simula
tion terminates without an error. Another execution should now be simulated, until the 
designer is confident that no errors are present. 

Execution display: When the execution of the system is stopped for any reason, be it a 



www.manaraa.com

Cerberus - a tool for debugging distributed alogrithms 117 

breakpoint or an error, details of the actions that were executed to arrive in the current 
state are displayed in the main window. Also, at any point where the execution is paused 
the state variables of each automaton in the system may be hidden or displayed. Any 
displayed state variables will be updated after the execution of an action. Figure 2 shows 
a screen shot of the main window of the system with the enabled actions window and a 
window containing the state variables of an automaton. 

Breakpoints: When a window is opened to display the values of the state variables of an 
automaton, breakpoints are placed on the execution of any action within the automaton. 
Whenever the simulation is running freely and it chooses an action with a break point 
set upon it, then the simulation is paused. A description of the action and any related 
actions is also printed in the main window. Breakpoints are effective in both forwards and 
backwards traversal of the simulation and leave the system in the state after the execution 
of the action in both cases. Buttons on the state display window allow the breakpoints to 
be removed from either (or both) of the Internal and Input actions. 

Execution Exploration: A set of buttons along the top of the window allow the user 
to control the direction of execution and the number of steps the simulation will take. 
The buttons Step and Prev cause the execution to take a single step either forwards or 
backwards. If the algorithm is to step forward then the action it executes is dependent 
upon whether or not the current state is the last in the sequence of states that have 
been visited. If it is, then the action that is executed is determined by random selection 
as previously explained. If the current state has been reached by executing the program 
in reverse then the action to be executed will be one executed when this state was first 
visited. If the execution of the original action in this state caused an error then no further 
progress in this direction is allowed. 

If the direction of execution is in reverse then the values of the state variables in the 
state preceding the current one are restored. 

The buttons Forward and Backward again execute the system in the respective direc
tion, however instead of executing a single event they continue executing until the action 
executed meets a breakpoint. 

4 AN EXAMPLE - ATOMIC MULTICAST 

To demonstrate the way Cerberus is used, we have taken a simple algorithm from the 
paper by Fekete (1993). This algorithm provides the communication service called atomic 
broadcast (or sometimes also called totally ordered broadcast). This is an important build
ing block in management of replicated data. 

The algorithm can be described informally as follows. The network topology must form 
a tree, with each node aware of the connection to its parent. When a node receives a 
request from a client to broadcast a message to all other nodes, this request is firstly sent 
along the parent connections until it arrives at the root of the tree. The root then sends 
the message to all of its children and adds the message to a FIFO queue of messages to 
be delivered to the client. On receipt of message from its parent, each node behaves in 
the same fashion. This solution achieves the essential property that all clients receive the 
messages in the same order. it does this by allowing one node, the root of the tree, to 
make the decision as to the order in which messages will be received. 

To show the Cerberus tool in use, a bug was added to the algorithm. To model this 



www.manaraa.com

118 Part One Research Papers 

situation using I/0 Automata, three automata classes were used. The automata class 
AMCclient (node) models the clients which are using the service. The single parameter 
shown for this class specifies the identifier of the protocol node with which this client com
municates, to request services and receive results. Clients make requests that a message 
be broadcast upon the network using the Output actions sndMCast(node, (from,msg)) 
where parameter from contains the identifier of the client that is broadcasting the mes
sage, and msg contains the information to be sent to each of the other clients. In this 
simple example, the information is simply an integer that is incremented for each message 
that the client sends. The node parameter allows the automata that are modeling the 
service providers to only communicate with one client. 

The clients accept delivery of a message when they execute the input action rcvMCast (node, 
(from ,mag)) 

The protocol agent process at one node which is providing the Atomic Multicast is rep
resented by another automaton of the class AMCnode (parent, children) part of whose 
code is shown in Figure 3. The third automata class that is used in the simulation models 
the communication channel that provides an error free, in-order transmission of messages 
between neighbouring nodes in the network. 

The topology of the network in which this simulation was performed has 5 nodes. 
The root of the tree has Client 0; its children have Client 1 and Client 2 respectively. 
Client 1 is at a leaf, while Client 2's node has two children with Client 3 and Client 4 
respectively. Each node also has a protocol agent whose automaton identifier is 5 more 
than the corresponding client. 

The correctness of the algorithm is specified by providing an automata that embodies 
the desired behaviour of the service to be provided. It contains the same interface to the 
clients, i.e the actions to accept a multicast request from the client and to deliver the 
message to the client. The possible behaviours of the specification automata are the set of 
actions that represent all possible sequences of send and receive events that are allowed 
for an atomic multicast with the topology of the implementation automata. 

The specification automata maintains two state variables. The first state variable is 
a set, which contains messages that have been sent by a client and have not yet been 
delivered to any client. The second state variable is actually a collection of FIFO queues, 
one for each node. The messages on a queue represent those which must be delivered to 
the client associated with the node. When the specification automata accepts an action for 
multicast. it is added to the set of undelivered messages. There are two possible places from 
which a message can be chosen for delivery. At any time the head of the queue associated 
with a node may be delivered to that node (and removed from the corresponding queue). 
If the queue of messages awaiting delivery to a client by a node is empty, then any message 
in the undelivered set may be chosen and be delivered by that node. The effect of executing 
this action is to remove the chosen message from the undelivered set, and also to append 
it to the FIFO queue associated with every node except the node which delivered the 
message with the execution of the action. 

4.1 Simulating The System 

Once the automata classes (representing both algorithm and specification) had been com
piled and linked with the simulator, an execution was generated randomly. Very quickly 
an error is reported by the system. The message below is generated and the action that 



www.manaraa.com

Cerberus - a tool for debugging distributed alogrithms 

automata AMCnode (parent socket; children aocketSet;) 
var 

i : socket; 
II : integer; 

state_vara 
rcvdQueue : MsgQueue; 
pending : NodeQueue; 

initial rcvdQueue :e~ seq(); pending :• seq(); 
begin 

ODd 

input sDdMCaat (node : integer; msg : MagTypo. ; ) 
restrict node -== AutomataNum; 
begin 

it 

fi; 
end 

parent .from •• NONE -> begin 
forall i in children -> do 

pending :• pending + seq(QType{i.to,PktType(RECV,JUg))); 
od; 
rcvdQueue :c rcvdQueue + seq(ug); 

end 
true -> begin 

end 

pending :=poDding+ seq(QTypo.(parent.to,PktTypo.(SEND,mag))); 
rcvdQueue :• rcvdQueue + seq(msg); I• BUG ! ! ! •I 

output rcvMCast(node integer; mag MsgType;) 
I• OMITTED •I 

input receive(cbumel integer; pkt PktType;) 
restrict 

N :• 0; 
(channel •• parent.from) II 
{(forall i iD children -> do 

if 
channel •• i.from -> N :• N + 1; 

fi; 
od) tl: FALSE) II (N > 0); 

begin 
if 

fi; 
ODd 

(pkt. typo. •• SEND) -> begin 
if 

ti; 
end 

(parent.to != NONE) -> pending :• pending + aeq(QType(parent.to,pkt)); 
true -> begin 

oDd 

rcvdQueue :• rcvdQueue + seq(pkt .mag); 
forall i in children -> do 

pending :=poDding+ seq(QType(i.to,PktType(RECV,pkt.meg))); 
od; 

true -> begin 

eDd 

rcvdQueue :• rcvdQueue + aeq(pkt .llBg): 
forall i in children -> do 

pending :• pending+ seq(QTypo.(i.to,pkt)); 
od; 

output send(chumel integer; pkt PktType;) 
I• OMITTED •I 

Figure 3 Abbreviated Source for the Atomic Multicast Node 

119 



www.manaraa.com

120 Part One Research Papers 

caused the automata to change to the state in which this action is enabled is printed. 
ERROR: specification can not execute rcvMCast(7,(2,0)) 

This leads us to examine the state variables of the specification automata and of AM
Cnode(7). From the displays we saw that the node that tried to execute the unallowed 
action contained two messages to be delivered (2,0) and (2,1). Looking at the state vari
ables of the specification automata we saw that node 7 should have been delivering the 
two messages (3,0) and (3,1). We also observed that the set of messages awaiting their 
first delivery in the specification automata includes the message (2,0) which the node in 
the algorithm was about to deliver. Thus the error must have been earlier, leading to 
message (2,0) entering the queue incorrectly. 

We would now like to begin looking for the cause of the discrepencies in the state 
variables. The first thing we tried was to go back and look at the the delivery of any 
messages to the clients. We could achieve this by displaying the window that contains 
the node 7 state variables and choosing to not display Input actions of the specification 
automaton. Now the execution will pause each time the specification automata executes 
an Output action: these actions correspond to the delivery of messages to the clients. As 
the specification contains such actions for all the nodes within the network we were able to 
leap back through each delivery of each message to a client. On doing this we encountered 
only two actions that delivered messages, node 8 delivers the message (3,0) and then (3, 
1 ). 

To observe the state variables before and after the execution of an action, we use a 
breakpoint on that action, and then step back one statement using the button provided. 
In both actions of node 8, the transformation of the state variables in both the specification 
automata and the implementation node are as expected. The node removes the delivered 
message from the queue of nodes awaiting delivery and makes no other changes. The 
specification removes the delivered message from the set of undelivered messages and 
adds copy of it to each of the message queues inside the specification automata except for 
the queue associated with the node where the message was delivered. 

The deliveries of the messages all appear to behave in the expected manner, so we 
decided to investigate the sending of the messages next. We did this by displaying the 
state of clients 2 and 3 (those that were senders of the two messages involved). Displaying 
these components sets breakpoints on their output actions. When each action is found 
in the execution, we examine the state variables of the corresponding node. When we 
do this for the action that transmits a message from client 2 we saw that this action 
adds the message (2,0) to the queue of messages to be delivered to the client, but in the 
specification it was not waiting to be delivered back to the client. We step through the 
actions executed and find that this value remains at the head of the queue until the last 
state before the illegal action was executed. This reveals the bug: client 2 is not the root 
of the tree and therefore should not add a message until it has been sent to the root of 
the tree first. After this part of the code has been corrected, the algorithm works as the 
specification says it should. 

5 CONCLUSION 

We have described a tool that allows the designer to experiment with a distributed al
gorithm in an abstract form, early in the software lifecycle. By simulating the algorithm 



www.manaraa.com

Cerberus - a tool for debugging distributed alogrithms 121 

and continuously comparing its behavior to that of a service specification, errors can be 
found. The key contribution of this work is that the designer can explore the inappropriate 
execution, moving forwards and backwards in large stages as they seek the specific aspect 
of the algorithm that must be fixed. 

The prototype we have constructed is far from complete. In future work, we are looking 
to expand the flexibility of the breakpoint mechanism. At present, we set breakpoints 
which allow us to jump forwards or backwards to the next action or next output of a given 
automaton. A natural extension would be to move along the causal dependencies; thus 
from any point one would have a choice of moving to the next action of that automaton 
or else to the send (or receive) corresponding to the current recieve (or send). 

Our design envisages more powerful support for exploration. We plan to allow a break
point to be set independently on any variable in any component's state. Thus the user 
could pause the execution at the next step which leads to a change in the value of that 
variable. In the example of section 4, as soon as we found that there was an inappropriate 
value in the queue in node 7, one could jump backward directly to the action that placed 
the incorrect value there. 

Another useful facility would be the ability to give a relationship between the state of 
algorithm and that of specification, and use the failure of this relationship as a condition 
to stop the execution's simulation. Thus sort of relationship (called a "refinement" or 
"abstraction mapping") has been very helpful in proving protocols correct; we expect it 
would also be helpful in finding errors. 

REFERENCES 

Fekete, A. (1993), Formal Model Of Communication Services: A Case Study, IEEE Com
puter 26{8):37-47. 

Goldman, K. {1990) Distributed Algorithm Simulation Using Input/Output Automata. 
PhD Dissertation, MIT Laboratory for Computer Science. 

Holzmann, G. (1991) Design and Validation of Computer Protocols. Prentice-Hall. 
Knapp, E. {1987) Deadlock Detection in Distributed Databases, ACM Computing Surveys, 

19{4):303-328. 
Lynch, N. and Tuttle, M. {1989) An Introduction to Input/Output Automata, CWI

Quaterly, 2(3). 
Mullender, S. {1993) Distributed Systems {2nd edition). Addison Wesley. 
Ng, K., Kramer, J., Magee, J. and Dulay, N. (1995) The Software Architect's Assistant

A Visual Environment for Distributed Programming Proceedings of 28th Hawaii Inter
national Conference on System Sciences vol II, 254-263. 

Schneider, F. {1990) Implementing Fault-Tolerant Services Using the State Machine Ap
proach: A Thtorial ACM Computing Surveys 22{4):299-319. 

Stevens, W. (1990) Unix Network Programming. Prentice Hall. 



www.manaraa.com

11 

Debugging Parallel Programs using 
Temporal Logic Specifications 

M. Frey 
Institutfiir lnformatik, Technische Universitiit Miinchen 
Orleansstr. 34, D-81667 Munich, Germany, Phone: ++49 89 48095-145, Fax: 
++49 89 48095-160, email: jrey@informatik.tu-muenchen.de 

Abstract 
A new method for debugging parallel programs using temporal logic is described. The program
mer can specify his hypothesis about the causes of an error in a temporal logic language. A 
model checking algorithm automatically checks the specification. The model is a partial order 
model of a class of program runs which is generated during a single run. Because it is partially 
ordered, errors can be detected even if they did not occur during the program run. 

Keywords 
Debugging, parallel and distributed programs, specification, partial order temporal logic 

1 INTRODUCTION 

As the number of parallel and especially distributed systems is growing, the demand for formal 
methods to develop parallel and distributed programs increases. Developing methods of the 
sequential world are often not adequate for the development of parallel and distributed systems, 
because of the nondeterministic nature of parallelism and the absence of global states in dis
tributed systems. This paper investigates the debugging process after the implementation of a 
parallel and distributed program. 

Mostly, debugging starts when the program reacts faulty in a test case. The programmer 
analyzes the symptoms of the error during the test case and builds a hypothesis about the 
cause of the error. Afterwards, he has to decide whether the hypothesis is correct or not. If the 
hypothesis is correct, he can eliminate the error. Otherwise, he has to build another hypothesis 

Figure 1 The process of debugging. 

(see figure I and (Myers 1979)). Normally, the evaluation of the hypothesis is done by setting 
breakpoints and examining variables at breakpoints. When you have set the right breakpoints 
and examined the right variables, you can decide whether the hypothesis is correct or not. 



www.manaraa.com

Debugging parallel programs using temporal logic specifications 123 

Our approach supports the programmer during the evaluation of the hypothesis. He can specify 
the properties of the hypothesis in a temporal logic language. It is automatically checked during 
a second run of the test case whether the properties are satisfied or not. If the properties are 
satisfied, the hypothesis is not correct. Otherwise, the error is located and can be eliminated. 

Our concept can be used for parallel systems which meet the shared memory paradigm, the 
message passing paradigm, or combinations of both. In the following we call parallel activities 
of a program tasks. Tasks can work on the same address space or on different address spaces 
including distribution. They can communicate by shared variables or by message passing. Tasks 
can be created dynamically during a program run (see figure 2). These model of parallel and 
distributed programs contain programs written in most of the existing languages or libraries. 

Figure 2 Model of parallel programs. 

The next section gives an overview of the evaluation of the hypothesis. Section 3 introduces 
our model for program runs, called state action net. A description of the temporal logic is given in 
section 4. Section 5 describes the model checking algorithm. Finally, we give some conclusions. 

2 OVERVIEW 

When the programmer has specified the hypothesis, he reruns the program. During this run 
interesting events are recorded in a trace. Interesting events are for example task creation, 
communication, access to a shared variable, entering, or leaving of a function body. This trace 

~ model checking 

trace 

Figure 3 Debugging based on temporal-logic specifications. 

is used to generate a state action net. It contains only those dependencies between tasks of the 
program run which represent synchronization points given by the semantics of the program. All 
other dependencies between tasks of the run are arbitrary and left out. This way, a state action 
net does not only represent the program run by which it was generated but an equivalence class 
of program runs. This equivalence class can contain faulty program runs even if the original 
program run was correct. Finally, a model checking algorithm is applied which checks whether 
the temporal-logic specification is satisfied in the state action net (see figure 3). 

(Hurfin, Plouzeau & Raynal 1993) present another approach for debugging parallel and dis
tributed systems. They use atomic sequences of predicates for specification. (Garg & Waldecker 
1994) use a subset of a temporal logic which allows only to specify formulas of the form 



www.manaraa.com

124 Part One Research Papers 

D~(p1 1\ ... 1\ Pn)· Both approaches can not be used for programs communicating by shared 
variables and programs with dynamic task creation. Their models of program runs define a 
partial order between events of tasks and are similar to state action nets in this way. In contrast 
to (Frey & Weininger 1994) this paper investigates the model checking algorithm in more detail. 

Example 
Figure 4 shows an example for a parallel program. This program implements a ring buffer with 
parallel access. The buffer is represented by the variable b. It contains the components data for 
the data field, first pointing on the element of data previous to the first element, and last pointing 
on the last element. The sequential function append inserts an element at the end of the buffer 
by incrementing last and inserting the element. The function remove fetches an element from 
the beginning of the buffer and increments first. This way, the buffer is implemented by a queue. 
The parallel function get contains some synchronization statements and calls remove. put also 
contains synchronization and calls append. We will use this example in the following sections. 

b.last #define N 200 
struct queue { int data[N); int frrst; int last I b={ {01,0,01; 

pul(int elem) { 
mutual exclusion w.r.t. put: 

wait until b not full: 
append(elem); ) 

get(int *elem) { 

Definition of the sequential functions 
remove and append 

mutual exclusion w.r.t. get: 
wait until b not empty; 
remove(elem); I 

Figure 4 A ring buffer with parallel access. 

3 STATE ACTION NETS 

State action nets are our models of program runs. They are finite occurrence nets (cf. (Reisig 
1988)) with specific kinds of nodes: actions and local states. 

Actions represent executions of statements of the source code which have to take place at 
the same time because of the semantics of the program. For example an action modeling a 
synchronous communication represents two executions of statements (see figure 5). An action 
contains 

• for each of its executions of statements the location of the statements in the source code and 
• the tasks which have executed the statements. 

tid:25H tid:15 
25: file2,line 5: filet, linel 

tid:25 tid: 15 

0 local state 

~action 

Figure 5 An action modeling a synchronous communication. 

Local states contain information which is local for a task. A local state s contains 

• the identification of the task (tid(s)) to which it belongs. 
• information about the functions executed at s (stack( s) ).It can be distinguished whether s is 

at the beginning of a function f (STAR'f./), s is somewhere during the execution off (IN .f), 



www.manaraa.com

Debugging parallel programs using temporal logic specifications 125 

or s is at the end of f (TERM. f). stack( s) contains the information about the execution in 
the same order as the functions are called. 

• a set of values for each variable var (val( var, s)) which is visible in the functions of stack( s). 
A shared variable var can have more than one value in s if an action exists which is not 
causally ordered with sand represents a write access to var. In this case var can have ir.. s 
the value before the write access as well as the value after the write access. 

State action nets are occurrence nets which have to fulfill additional properties: A state action 
net (SAN) N is a tuple ( S, A, R, I) where 

1. S is a finite and nonempty set of local states. 
2. A is a finite and nonempty set of actions. 
3. R ~ (S x AU A x S) is a relation with the following properties: 

(a) the transitive closure of R, R+, is irreflexive. 
(b) for all s E S :I •s 1:5 1 and I s• 1:5 1 where •s is the preset and s• is the postset of s. 
(c) for all s1 , s2 E S: if s1 =F s2, (st. s2) ~ R+, and (s2, s1 ) ~ R+ then tid(s1) =F tid(s2 ). 

(d) for all s E S :I •s I= 1 and for all a E A :I a• I> 0. 
4. I ~ A where for all a E I :I •a I= 0. 

The properties 1., 2., 3.(a) and 3.(b) are properties of a finite occurrence net and define that 
SANs are a specific kind of occurrence nets. 4. defines that I contains all initial actions. 3.(c) 
states that local states which belong to the same task, are not concurrent. 3.(d) defines that for 
each local state s an initial action a exists with (a, s) E R+. 

pc-/STAAT.puttask....id=25 
b.flrst={O} b.lasi={O} 

pc=IIN.put 

pc-IIN.put/STAAT.append 

pc=IIN.put/IN.append 

pc=IIN.~ut/TEAM.append 
b.firsi={O, 1} b.last={1} b.data[1 )={21} 

pc-/TEAM.put 

Figure 6 A state action net generated by a run of the program of figure 4. 

The SAN in figure 6 is generated by a test case of the program of figure 4. In the test case get 
is called and afterwards put inserts 21. There is one dependency between the task executing put 
and the task executing get which is caused by the waiting condition of get. 

4 TEMPORAL LOGIC SPECIFICATIONS 

The temporal logic to specify the hypothesis consists of two parts: 

• The local state logic (LSL) is a propositional logic to specify properties of local states. 
Formulas of LSL can be satisfied, unsatisfied or undefined in a local states. They can be 
undefined in s if they contain variables which are not visible in the functions of stack( s). 

• The temporal logic (TL) is used to specify properties of the SAN and is similar to the 
logic in (Reisig 1988). TL contains formulas of LSL as atomic formulas. The semantics of 
TL-operations are defined over global states of the SAN, called slices. 



www.manaraa.com

126 Part One Research Papers 

A slice of an SAN (S, A, R,I) is a maximal subset I ~ S where for all x, y E I, neither 
( x, y) E R+ nor (y, x) E R+. A slice I' is a successor of a slice I (I' nextslice I) iff an action a E A 
exists with {s E Sl(s,a) E R} ~I and {1- {s E Sl(s,a) E R}) U {s E Sl(a,s) E R} = 1'. 

~- :::.::, 
~ lnextslice+k 
kll' I" m 

I" nextslice I 

m nextslice+ I 

Figure 7 Slices and the relation nextslice. 

Because of the properties 4. and 3.(d) of the definition of SANs in section 3 an initial slice 
exists for all SANs. Furthermore, it can be proven that the slice graph of an SAN which contains 
slices as nodes and the elements of nextslice as edges, is fully connected, directed, and acyclic. 

For many interesting properties of parallel and distributed programs it is necessary to specify 
whether a formula is satisfied in local states of different tasks or the tasks are in the relation "is 
caller of'. To implement many parallel and distributed systems in an efficient way, new tasks 
have to be created dynamically. In those system tasks can not be identified statically. So we need 
some kind of place holder for a task identifier, called task-id variable, and an assignment, called 
task-id assignment, 'I' : TV AR --+ TID where TV AR is a set of variable identifiers, and TID 
is the set of task identifiers of a program run. The semantics of the temporal logic operations are 
defined by tuples (I, 'I') called cuts where I is a slice, and'! is a task-id assignment. 

The logic has some differences to other logics like LTL or CfL* (cf. (Emerson 1990)): 

• The model for program runs are sequences in LTL and trees in CfL •. The slice graph defines 
a partial order between slices. This partial order can of course be unwounded to a tree or a 
sequence of slices and the temporal logic operations, except until, can be expressed by CfL •. 

• In contrast to LTL and CfL • our logic has the following compositional property: If a formula 
is satisfied in an SAN Nt = (S~> AI> F~> It) then it is also satisfied in an SAN N2 = 
(S2,A2,F2,I2) where St ~ S2, At~ A2, F2 ls,xA,uA,xs,= Ft. and the functions, task
ids, and variables of s E St are different to those of s E S2 - St (see (Reisig 1988) for 
details). Because of this property, it is possible to test and debug modules separately. After 
composition of the modules a further test of the properties of the modules is not necessary. 

The syntax of LSL contains predicates and formulas. A predicate may be p_expr, start/, inJ, 
or term.f where f is a function, and p_expr is a side effect free expression of the programming 
language which returns a boolean value, and may contain program variables. A formula of LSL 
(LSL-formula) may be a predicate, (p or q), (p and q), or not (p) where p and q are formulas. 

The semantics of LSL is defined over local states. A predicate or a formula p of LSL can be 
satisfied in a local states (s f= p), unsatisfied ins (s IF p), or undefined ins (s 1EJ p): 

• s f= p_expr iff for all values of each program variable, p..expr evaluates to true. 
s IF p_expr iff a value of each program variable exist where p_expr evaluates to false. 
s lEI p..expr iff a program variable of p..expr is not visible in the functions of stack( s ). 

• sf= startJiffSTART/E stack(s), s IF start.felse. 
• s f= inJiffSTART/E stack(s), IN/E stack(s), orTERM/E stack(s), s IF in/else. 
• s f= termJ iff TERM/ E stack( s ), s IF term./ else. 
• sf=(pandq)iffsf=pandsf=q. 

s IF (p and q) iff[s IF p and [s IF q or s f= q]] or [s f= p and s IF q], s ~ (p and q) else. 
• s f= (p or q) iff [s f= p and [s IF q or s f= q]] or [s IF p and s f= q]. 

s IF (p or q) iff s IF p and s IF q, s lEI (p or q) else. 



www.manaraa.com

Debugging parallel programs using temporal logic specifications 127 

• s f= not (p) iff s If p. s If not (p) iff s f= p, and s tel not (p) else. 

An expression of TL (TL-expression) may be tvar:(lsf), not (p), (p and q), (p or q), next (p), 
sometime (p), always (p), (p before q), or (p until q) where tvar is a task-id variable, lsfis a 
LSL-formula, and p, q are TL-expressions. A formula of TL (TL-formula) may be expr, forall 
tvar (p), exists tvar (p), (p if tvar = tvar'), (p if tvar != tvar'), or (p if tvar == caller(tvar')) 
where pis a TL-formula, expr is a TL-expression and tvar, tvar' are task-id variables. 

The semantics of TL is based on cuts. A formula p of TL can be satisfied in a cut I! = ( 1, '!) 
(I! f= p), unsatisfied in I! (I! If p), or undefined in I! (I! lEI p): 

• I! f= tvar:(lsf) iff an s E I exists where '!(tvar)= tid( s ), and s f= lsf 
I! If tvar:(lsj) iff an s E I exists where '!(tvar)= tid( s ), and s IF lsf I! t;:1 tvar:(lsj) else. 

• I! f= not (p) iff I! If p. I! If not (p) iff I! f= p, and I! ~ not (p) else. 
• I! f= (pand q)iffl! f= pand I! f= q.l! If (pandq)iffl! If por [I! f= pand I! If q]. 

I! lEI (p and q) else. 
• I! F= (por q) iff\! F= por [I! If pand I! F= q].l! If (porq) iff\! If p and I! If q, 

I! ~ (p or q) else. 
• I! next (p) iff a slice I' exists where I' nextslice I and (I','!) f= p. 

I! next (p) iff for all slices I' where I' nextslice I, (I', '!) IF p or (I', '!) tel p. 
• I! f= sometime (p) iff a slice I' exists where I' nextslice+ I and (I','!) f= p. 

I! If sometime (p) iff for all slices I' where I' nextslice+ I, (I','!) IF p or (I','!) lEI p. 
• I! f= always (p) iff for all slices I' where I' nextslice+ I, (I','!) f= p or (I', 'I) tap. 

I! If always (p) iff a slice I' exists where I' nextslice+ I and (I','!) If p. 
• I! f= (p before q) ifffor all slices I' where [I' nextslice+ I and (I', 'I) f= q], a slice I" exists 

where [I" nextslice+ I, and I' nextslice+ I"], and(/",'!) f= p. 
I! If (p before q) iff a slice I' exists where [I' nextslice+ I, and (I', 'I) f= q] and for all slices 
l" where [I" nextslice+ I and I' nextslice+ 1"], (1", '!) If p or (1", 'I) tel p. 

• I! f= (p until q) iff a slice I' exists where [I' nextslice+ I, and (I','!) f= q], and for all slices I" 
where [I" nextslice+ I and I' nextslice+ 1"], (I", 'I) f= p, or (I",'!) tel p. 
I! If (p until q) iff for all slices I' where [I' nextslice+ I and (1', 'I) f= q], a slice I" exists 
where [I" nextslice+ I, and I' nextslice+ 1"], and (I",'!) If p . 

• I! F foralltvar(p)iff(l, xtv~r) F p* or (1, xtv~r) lEI p for all t E TID. 
I! If forall tvar (p) iff (l, xtv~r) If p for some t E TID. 

• I! f=existstvar(p)iff(l,'!tv~r) f=pforsomet E TID. 
I! IF exists tvar (p) iff (I, xtv~r) If p or (I, xtv~r) tap for all t E TID. 

• I! f= (p if tvar op tvar') iff I! f= p and '!(tvar)op'!(tvar'). I! If (p if tvar op tvar') iff I! If p 
and '!(tvar)op'!(tvar'). I! ta (p if tvar op tvar') else. opE { ==,! = }. 

• I! f= (p if tvar == caller(tvar')) iff I! f= p and task '!(tvar) is the task which has called task 
'!(tvar'). I! If (p if tvar = caller(tvar')) iff I! IF p and task '!(tvar) is the task which has 
called task '!(tvar'). I! lEI (p if tvar == caller(tvar')) else. 

A TL-formula p is satisfied in an SAN N iff for all slices I of N and all task-id assignments 'I 
it is valid that (I,'!) f= p or (I,'!) lEI p. A TL-formula p is unsatisfied in an SAN N iff a slice I 
of Nand a task-id assignment 'I exist where (I,'!) If p. 

We give an example by specifying some properties of the program of figure 4. A necessary 
property of the program is mutual exclusion between tasks executing append: 

not( tl:(in.append) and t2:(in.append)) if tl != t2 
Another property of the program is mutual exclusion of remove and append when both are 

*'!tvfr(tvar') = '!(tvar') ifftvar' ::p tvar; '!tvfr(tvar) = t. 



www.manaraa.com

128 Part One Research Papers 

working on the same element of data. This is the case, when at most one element is in the buffer: 
not( tl:(in.append and (b.last-b.first)%N<=l) and t2:(in.remove and (b.last-b.first)%N<=l)) 

5 DETECTING DEVIATIONS 

This section describes a model checking algorithm which detects deviations between a specifi
cation and an SAN. Generally, model checking methods can be divided into two classes: Tableau 
based methods (cf. (Winskell991)) and global methods (cf. (Clarke, Grumberg & Long 1993)). 
Our model checking method is a global method, because subformulas of a formula are marked 
with cuts. It differs from other global methods because it is working on a model of program runs 
and the model have not to be unfolded. Another difference to tableau based methods as well 
as global methods is that not all cuts have to be calculated. Only those cuts must be calculated 
which are necessary to decide whether a TL-formula is satisfied. The model checking algorithm 
can be divided into the following steps: 

I. Negation ofTL-formulas 
2. Transformation of negated TL-formulas 
3. Construction of formula trees 
4. Checking local state formulas 
5. Checking TL-formulas 

5.1 Negation of TL-formulas 

Given a TL-formula p and an SAN N, we have to check whether pis satisfied inN. If pis 
unsatisfied, the programmer wants to know why p is unsatisfied. He is interested in the cuts 
and local states of N in which p and subformulas of p are unsatisfied. Therefore, we have to 
calculate all cuts in which not p is satisfied. 

5.2 Tra~formation of TL-formulas 

To check whether a TL-formula is satisfied, we have to find a set of TL-operations where a 
logically equivalent formula q containing only these operations exists for every TL-formula p. 
We require that q can be more efficiently checked than p. 

The set of TL-operations which we use contains and, or, next, aU.next, always, sometime, 
until, and before. It contains the additional operation aU..next and does not contain the negation 
for the following reason: If we want to detect all cuts of N which unsatisfy a TL-formula p and 
satisfy not p, we have to detect all cuts in which p is satisfied and all cuts in which p is undefined, 
because p is unsatisfied in all cuts of N without the cuts in which p is satisfied or undefined. 
A more efficient method is to transform not p into a logically equivalent TL-formula which 
contains no negation in the temporal-logic part. Before we introduce the logical equivalences, 
we define the semantics of the additional operation: 

( l, 'I') != all..next (p) iff for all slices l' where l' nextslice l ( l', 'I') != p or ( l', 'I') ~ p. 
( l, 'I') IF all..next (p) iff a slice l' exists with l' nextslice l and ( l', 'I') IF p. 

We have to transform the TL-formulas not p, into logically equivalent formulas which do not 
contain the operation not. For these transformations we use the following equivalences: 

not(p and q) is equivalent to (not p or not q); not next pis equivalent to all.next not p; 
not sometime p is equivalent to always not p; not(p until q) is equivalent to (not p before q ); 



www.manaraa.com

Debugging parallel programs using temporal logic specifications 129 

not tvar:(lsf) is equivalent to tvar:(not lsj); not not p is equivalent top; 
not forall tvar(p) is equivalent to exists tvar(not p ); 
not (p if ifpart) is equivalent to ((not p) if ifpart); 

5.3 Construction of formula trees 

Formula trees are used to evaluate the TL-formula. They are the basic structure of the model 
checking concept. A formula tree can contain two different kinds of nodes: 

• Nodes containing cuts which satisfy a TL-formula p (s-node{p)). 
• Nodes containing cuts which leave a TL-formula p undefined (u-node{p)). 

A formula tree of a TL-formula is similar to a syntax tree, but there are some differences. The 
formula tree of a formula q' is defined as follows: 

• s-node(tvar:(lsf)) and u-node(tvar:(lsj)) have no successor nodes. 
• The successor nodes of s-node({p and q)) are s-node{p) and s-node(q). 

The successor nodes ofu-node({p and q)) are u-node{p), u-node(q), and s-node{p). 
• The successor nodes of s-node({p or q)) are s-node(p), s-node(q), and s-node(not p). 

The successor nodes ofu-node({p or q)) are u-node(p), u-node(q), and s-node(not p). 
• s-node(next p), s-node(exists tvar(p)), and s-node((p if ifpart)) have the successor s-node(p). 
• The successor nodes of s-node(all..next p) are s-node(p) and u-node(p). 
• The successor node of s-node(sometime p) is s-node(p). 
• The successor node of s-node(always p) and s-node(forall tvar(p)) is s-node(not p). 
• The successor nodes of s-node({p until q)) are s-node(not p) and s-node(q). 
• The successor nodes of s-node({p before q)) are s-node(p) and s-node(q). 
• The root of the formula tree of q' is the s-node(q'). 

The u-nodes of the TL-expressions next p, aiLnext p, sometime p, always p, (p until q), and 
(p before q) contain no cuts and no successor nodes, because these TL-expressions are never 
undefined. The u-nodes are only necessary for the calculation of cuts for TL-expressions of the 
form all..next p. TL-formulas may not be subformulas of TL-expressions and u-nodes are not 
necessary for them. A node of a formula not p is the node of the transformed formula using the 
transformations of section 5.2. 

Figure 8 shows the formula tree of the formula 
tl:{term.append) implies ( t2:(b.data[1]==21) until t3:(start.remove) ) 

after the negation and transformation. 

s-node((r and t)) 

/""-s-node(l1 :(term.append)) s-node(lp be~re q}) 

~/~=:1 
s-node(l2:(not b.data[1)-=21)) s-node(t1 :(start. remove)) 

~ ~ 
Figure 8 An example for a formula tree. 

5.4 Checking local state formulas 

After the construction of the formula tree cuts are calculated for the leaf nodes. 
To calculate the cuts for s-node(r) where r=tvar:(lsj), we have to run through the SAN and 



www.manaraa.com

130 Part One Research Papers 

check for each local states if lsfis satisfied in s.lsf contains expressions e1 ... en and e; contains 
program variables var ..i1 ••• var ..im. Cuts satisfying rare calculated as follows: 

if var _1 1 .•. var ..nm are visible in stack( s) 
then r c1 := true; 

for all v_1 E val( var _11> s) do ... for all v_1m E val( var _1m, s) do 
ife var_1J ... var-1m = falsefthenC1 :=false 

1 v_l ... v_lm 

Cn :=true; 
for all v_1 E val( var ..n~, s) do ... for all V-nm E val( var ..nm, s) do 

if en var_n, ... var_nm = false then Cn := false v_l ... v..nm 
if lrl"~ then r 

~Jc, ... Cn '!(tvar) := {tid(s)}; 
R := slices(s); 

L 
L forall/ E R do s-node(r):=s-node(r) U (/, '!) 

The function slices( s) returns all slices which contain the local state s. 
The cuts for u-node(r) are calculated as follows: 

if var -1 1 is not visible in stack(s) or ... or var ..nm is not visible in stack(s) 
then r '!(tvar) := {tid(s)}; 

R := slices(s); 
Joralll E R do u-node(r):=u-node(r)U (/, '!) 

The complexity for calculating the cuts in the leave node is O(B*C) where B is the number of 
LSL-formulas in the formula, and Cis the number of cuts of an SAN. 

5.5 Checking TL-formulas 

This section describes how cuts of the inner nodes of the formula tree are calculated. Beginning 
with cuts of the leave nodes, we calculate the cuts of the other nodes in a single bottom-up run 
through the formula tree. We calculate the cuts of an inner node of the formula tree using the 
cuts of its successor nodes and a function which depends only on the TL-operation and the kind 
(s-node or u-node) of the node: 

The cuts of an s-node((p and q)) are calculated by the following algorithm: 

for all(/,'!) E s-node(p) do for all(/','!') E s-node(q) do 
if l =I' and comp('!, '!', V AR(p) n V AR(q)) 
then r '!'' =merge('!, V AR(p), '!', V AR(q)); 

L s-node((p and q)):=s-node((pand q)) U(/, '!"); 

comp('!, '!', V AR) checks whether '!(v) = 'r'(v) for all v E V AR. V AR(p) is the set of 
all task-id variables of p. The complexity of comp('!, '!', V AR) is O(H) where H=l V AR I· 
merge('!, V AR(p), '!', V AR(q)) calculates a task-id assignment'!" with '!"(v) = '!(v) for 
all v E V AR(p) and '!"(v) = '!'(v) for all v E V AR(q). The complexity is O(H) where 
H=l V AR(p) U V AR(q) I· The complexity of the algorithm is O(C2*H) where Cis the number 
of cuts of an SAN. 
The cuts of an u-node((p and q)) are calculated as follows: 

tWhen p;::::;: is evaluated, the tenns z; ofp are simultaneously substituted by y; for all i = 1 ... n. 



www.manaraa.com

Debugging parallel programs using temporal logic specifications 131 

for all(/,'!) E s-node{p} do for all(/','!') E u-node(q) do 
if I= I' and comp('!, '!', V AR(p) n V AR(q)) 
then r '!'' =merge('!, V AR(p), '!', V AR(q)); 

L u-node({p and q}):=u-node({pand q}) U(l, '!"); 
for all (I, '!) E u-node{p) do for all '!' do 

if comp('!', '!, V AR(p)) then u-node({p and q}):=u-node({pand q}) U(/, '!'); 

The algorithm has O(C2*H) complexity. 
The following algorithm calculates the cuts of s-node({p or q}): 
for all (1, '!) E s-node(q) do for all(/','!') E s-node(not p) do 

if I= l' and comp('!, '!', V AR(p) n V AR(q)) 
then r '!'' =merge('!, V AR(p), '!', V AR(q)); 

L s-node({p or q}):=s-node({por q}) U(/, '!"); 
for all ( l, '!) E s-node{p) do for all '!' do 

if comp('!', '!, V AR(p)) then s-node((p or q)):=s-node({por q}) U(/, '!'); 

The algorithm is also of 0(C2*H). 
The cuts of an u-node{{p or q)) are calculated using the cuts of the successor nodes: 
for all(/,'!) E s-node(not p) do for all(/','!') E u-node(q) do 

if l = l' and comp('!, '!', V AR(p) n V AR(q)) 
then r '!'' =merge('!, V AR(p), '!', V AR(q)); 

L u-node({p or q}):=u-node({por q)) U(/, '!"); 
for all (I, '!) E u-node(p) do for all '!' do 

if comp('!', '!, V AR(p)) then u-node({p or q)):=u-node({por q}} U(l, '!'); 

The complexity is 0(C2*H). 
The cuts of a node s-node(next p} are calculated as follows: 

for all(/,'!) E s-node{p)dor R := PRED((l, '!)); 
L s-node(next p):=s-node(next p) UR; 

PRE D( ( l, '!)) calculates all cuts ( l', '!) with I nextslice l'. The complexity of PRE D is 
O(K) where K is the maximal number of local states which are concurrent. The algorithm for 
calculating the cuts of s-node(next p) has O(C*K) complexity. 
The following algorithm calculates the cuts of s-node(all..next p): 
B := s-node{p} U u-node{p}; 
for all(/,'!) E B do for all(/','!) E P RED((/,'!)) do 

r C :=true; 
forall(/",'!) E SUCC((l','!))do 

r Cl :=false; 
for all (i, i') E B do if l" = i and comp('!, i', V AR(p)) then Cl :=true; 

Lifnot Cl then C :=false; 
Lif C then s-node(all..next p}:= s-node(all..next p) U(l', '!); 

SUCC((l, '!))calculates all cuts (I','!) with I' nextslice /.The complexity of SUCC is O(K}. 
The complexity of calculating the cuts of s-node(all..next p} is O(C2*KhH). 
The cuts of s-node(sometime p) are calculated as follows: 
for all ( l, '!) E s-node{p) do for all/' do 

if I nextslice+ /'then s-node(sometime p}:=s-node(sometime p} U (/', '!); 



www.manaraa.com

132 Part One Research Papers 

The relation nextslice+ can be checked in O(K2). The algorithm is of O(C*S*K2) where S is the 
number of slices of an SAN. 
The cuts of an s-node(always p) are calculated in the following manner: 

for all ( l, '!)do r C := true; 
for all (l', '!') E s-node(not p) do 

if comp('!, '!', V AR(p)) and l' nextslice+ l then C :=false; 
L. if C then s-node(always p):=s-node(always p) U (1, '!); 

The algorithm is of O(C2*(H+K2)). 

The following algorithm describes how the cuts of s-node((p until q)) are calculated: 

foraU(l,'!) E s-node(q)do forall(l','!')do 
if comp('!, '!', V AR( q)) and l nextslice+ l' 
then r C := true; 

for all ( l", T') E s-node(not p) do 
if comp('!', T', V AR(p)), l" nextslice+ l' and l nextslice+ l" then C :=false; 

L. if C then s-node((p until q)):=s-node((puntil q)) U(l', '!'); 

The complexity is O(Ci*(H+K2)). 

The cuts of an s-node((p before q)) are calculated as follows: 

for all (i, i) do 
r C :=true; 
for all (1, '!) E s-node(q) do 

if comp('!, '!, V AR(q)), and l nextslice+ i 
thenr Cl := true; 

L. 

for all ( l", T') E s-node( q) do 
if comp('!", '!, V AR(q)), l nextslice+ l", and l" nextslice+ i then Cl :=false; 

ifCl 
thenr C2 := true; 

for all ( l', '!') E s-node(p) do 
if comp('!', '!, V AR(p)), l'nextsJice+ i, and lnextslice+ l'thenC2 :=false; 

L. if C2 then C := false; 

L.if C then s-node((p before q)):=s-node((p before q)) U (i, '!); 
The complexity is O(Ci*(H+K2)). 

The following algorithm calculates the cuts of s-node(forall tvar(p)): 

for all (1, '!)do r C :=true; 
for all t E TID do for all ( 1', '!') E s-node(not p) do 

if l = l' and c:omp('! 1v~r' '!', V AR(p)) then C :=false; 
L. if C then s-node(forall tvar(p)):=s-node(forall tvar(p)) U ( l, '!); 

The algorithm is of O(C2*Z*H) where Z=l TID l· 
An s-node(exists tvar(p)) contains the same cuts as its successor node. 
The cuts of s-node((p if ifpart)) are calculated as follows: 

for all ( l, '!) E s-node(p) do 
if ifpart('!) then s-node((p if ifpart)):=s-node((pif ifpart)) U (1, '!); 



www.manaraa.com

Debugging parallel programs using temporal logic specifications 133 

The algorithm is of O(C). 

Using these algorithms for calculating the cuts of the inner nodes, the formula tree is evaluated 
bottom-up. If a slice is calculated for the root node of a formula tree, the specification is 
unsatisfied. The result of the checking algorithm states whether the specification is satisfied or 
not. If the specification is not satisfied the formulas which are not satisfied and a subnet of the 
state action net can be obtained to locate the error. The complexity of the whole algorithm is 
O(L *C3*(H+K2)) where L is the number of operations of the formula. 

6 SUMMARY 

This paper introduces a new method for debugging parallel programs using temporal logic. The 
method is based on model checking where in contrary to other model checking methods models 
of program runs are used. The main advantages of the method are that complex global properties 
can be specified and checked, errors can be detected even if they do not occur during the program 
run, and systems with dynamic creation of processes can be investigated. Our further work will 
include investigations to extend the method to use it for testing parallel programs. 

7 REFERENCES 

Clarke, E., Grumberg, 0. & Long, D. (1993), Verification tools for finite-state concurrent sys
tems, in J. de Bakker, W.-P. de Roever & G. Rozenberg, eds, 'A Decade of Concurrency, 
REX SchooVSymposium, Noordwijkerhout, The Netherlands', LNCS 457, Springer, Berlin, 
pp. 840-851. 

Emerson, E. ( 1990), Temporal and modal logic, in J. van Leeuwen, ed., 'Handbook of Theoretical 
Computer Science', Vol. B, Elsevier Science Publishers, Amsterdam, pp. ~1072. 

Frey, M. & Weininger, A. (1994), A temporal logic language for debugging parallel programs, in 
'Proceedings of the 20th EUROMICRO Conference, liverpool, England', Euromicro, IEEE, 
pp. 17()..178. 

Garg, V. & Waldecker, B. (1994), 'Detection of weak unstable predicates in distributed systems', 
IEEE Trans. on Parallel and Distributed Systems 5(3), 229-307. 

Hurfin, M., Plouzeau, N. & Raynal, M. (1993), Detecting atomic sequences of predicates in 
distributed computations, in 'ACM/ONR Workshop on Parallel and Distributed Debugging, 
San Diego, CN, ACM, ACM Press, pp. 32-42. 

Myers, G. (1979), The Art of Software Testing, Wiley, New York. 
Reisig, W. (1988), Temporal logic and causality in concurrent systems, in 'Concurrency 88', 

LNCS 335, Springer, Berlin, pp. 121-139. 
Winskel, G. (1991), 'A note on model checking the modal ~L-calculus', Theoretical Computer 

Science. 83(1), 157-167. 

8 BIOGRAPHY 

Maximilian Frey studied Computer Science at Technische Universitlit Miinchen. He received his 
MS degree from Technische Universitiit Miinchen in Computer Science (Diplom-Informatiker 
UNIV.) in 1993. He is currently a PhD student of Computer Science at Technische Universitiit 
Mtinchen. His research interests include specification, testing and performance analysis of 
parallel and distributed systems. 



www.manaraa.com

12 
OPERA : A Toolbox For Loop 
Parallelization 

Vincent Loechner and Catherine Mongenet 
Universite Louis Pasteur de Strasbourg, Laboratoire !CPS 
Pole API, Boulevard Sebastien Brant, 67400 Illkirch, France 
Phone : (33} 88 65 50 37. Fax : (33} 88 65 50 61 
email : { loechner, mongenet} @icps. u-strasbg.fr 

Abstract 
This paper presents the mat.hema.tical notions for the parallelization of DO-Loops used 
iu the tool OPERA currently under development in our team. It aims at giving the 
user an environment to parallelize problems described by systems of parameterized affine 
recnrrence equations which formalize single-assignment loop nests. The parallelization 
technique used in OPERA is based on a classical linear spacextime transformation. Its 
objectives are to visualize the affine dependences of a problem and to propose a set of 
different parallel solutions depending on various architectural constraints. 

Keywords 
loop paralleliza.tion, parameterized affine recurrence equations, parameterized domains. 

1 INTRODUCTION 

Scientific computing as well as many other application domains, has always required 
large amounts of memory a.nd hours of CPU time. An answer to achieve such high
performance computing can be found in the use of parallelism. Over the past decades many 
improvements have been made in the evolution of parallel machines, parallel languages 
and parallel environments. 

Scientific programs are characterized by the well-known 90-10 rule : 90% of the CPU 
time is spent in 10% of the code, that is to say the DO-Loops. Our objective is to develop 
techniques and tools to efficiently and automatically parallelize such loops and to show 
how various architectural constraints can be taken into account in order to synthesize 
different parallel solutions. These parallelization techniques are founded on sound and 
forma.! mathematical notions in order to guaranty the correctness of the synthesized pa.r
a.llel solutions and offer a good framework for their performance evaluation. Our work is 
based on the use of Systems of Recurrence Equations which are a formal description of 
single assignment DO-Loops. It finds its foundations on the many works on systolic ar
ray synthesis and their latest extensions to deal with affine recurrences. These recurrence 
equations are defined over convex integer polyhedra. In order to find a parallel solution, 



www.manaraa.com

OPERA: a toolbox for loop parallelization 135 

we apply on such polyhedra a linear space x time transformation. Therefore our formal 
methodology is based on the definition of such polyhedra and their manipulation using 
linear algebra. 

This paper presents the tool OPERA* currently under development in our team. This 
prototype aims at giving the user an environment to express and solve problems defined 
by systems of parameterized affine recurrence equations (PARE in the following). Param
eterized equations formalize loop nests with loop bounds depending on parameters, i.e. 
whose values are unknown at compile time. One of the interests of OPERA is to help the 
user to analyze his problems through the visualization of their geometrical properties. It 
determines several different parallel solutions and their main characteristics are automat
ica.Jly computed as functions of the parameters : the processor count, the latency, and the 
number and the nature of the communications (local neighbor-to-neighbor or broadcast 
communications). 

The paper is organized as follows. Section 2 shortly presents the method of PARE 
parallelization. An overview of OPERA is given in section 3. Section 4 illustrates its use 
with the Gaussian Elimination algorithm. Finally section 5, as a conclusion, compares 
OPERA with other existing tools and describes its current developments. 

2 PARALLELIZATION OF PARAMETERIZED AFFINE 
RECURRENCE EQUATIONS 

Among the many works concerned with DO-Loops parallelization, we distinguish two ap
proaches. The first one is based on the direct parallelization of DO-Loop programs using 
various dependence tests (Zima and Chapman (1990), Pugh (1992), Banerjee (1993)). 
The second approach consists in first transforming the DO-Loops into single-assignment 
loop nests (Cytron et al. (1991) ), which are free of dependences due to the lexicographical 
order of loop indices. These single assignment programs are then parallelized using syn
thesis techniques developped by the systolic community. We focus on this second step and 
deal with single assignment loops defined by systems of parameterized affine recurrence 
equations (PARE) defined over bounded convex polyhedra. 

Example. Gaussian Elimination. In order to solve a linear system of equations Ax = b 
where A= (a;i) is ann x n matrix and ban n vector, the Gaussian Elimination triangu
lates the extended matrix A =(A I b). It is defined by the following loop nest : 

DO k = 1 TO n-1 
DO j = k+1 TO n+1 

DO i = k+1 TO n 
A[i,j] = A[i,j] - A[i,k] * A[k,j] / A[k,k] 

DONE 
DONE 

DONE 

This loop nest can be transformed into the following equivalent single-assignment loop. 
The corresponding system of PARE given as input to OPERA is given figure 1. 

*OPERA is a french acronym for "Toolbox for the Parallelization of Systems of Affine Recurrence 
Equations". 



www.manaraa.com

136 Part One Research Papers 

#I# Gaussian Elimination algorithm Itt 
#dimension of the problem 

DIMENSION 3 
#parameter used in the visualization 

PARAM n=5 
#input 

M[i,j] = DATA { 1 <=i<• n, 1 <•j<• n+1 } 
#output 

OUTPUT= A[i,j,k] { 1 <•i<= n , i <•j<• n+1 , k • i-1} 
tinitialization equation 

A[i,j,k] = M[i,j] { 1 <•i<• n, 1 <=j<• n+1, k • 0} 
#computation equation 

A[i,j,k] = A[i,j,k-1]- A[i,k,k-1] • A[k,j,k-1] I A[k,k,k-1] 
{ k+1 <=i<= n , k+1 <=j<= n+1 , 1 <=k<= n-1 } 

Figure 1 Input file for the Gaussian Elimination algorithm. 

DO k = 1 TO n-1 
DO j = k+1 TO n+1 

DO i = k+1 TO n 
A[i,j ,k] = A[i,j ,k-1] - A[i,k,k-1] • A[k,j,k-1] I A[k,k,k-1] 

DONE 
DONE 

DONE 

A parameterized affine recurrence equation has the following form: 

X(z) = 1(- · ·, Y(g(z)), · · ·) (E) 

where X and Yare array variables, f is any computation function with 0(1) complexity, 
p E zm is the vector defining the m parameters of the problem, D, C Z is a convex 
bounded polyhedron associated with equation (E) called the index domain or the itel'lltion 
space. It is defined by a set of linear constraints expressed by a system of linear inequalities 
D, = { z E zd I p . z :::; Q . p + q} where p is a c X d integer matrix, Q is a c X m integer 
matrix and q is a. c integer vector. The index mapping g is an affine function with constant 
coefficients from zd to zd' ( d' :::; d) of the form: g( z) = R. z + r where R is a d' X d integer 
matrix called the index matl·ix and r is an integer vector of size d'. 

2.1 Dependence modeling and spacextime mapping 

In order to determine parallel solutions from such a PARE, the dependences have first 
to be modeled. This relies on the notion of utilization set. When considering a variable 
Y(zo), we call utilization set and we denote it by UtilE(Y, z0 ) the set of all the points of 
the domain using Y(zo) in their calculation. It is defined by : 

UtilE(Y,zo) ={zED, I g(z) = zo}. 

Mongenet et al. (1991) show that this is a convex bounded polyhedron whose linear space 
is K er( R) where R is the index matrix. The dimension of the utilization set is therefore 



www.manaraa.com

OPERA: a toolbox for loop parallelization 

.. ··. ·· .. ·· ... :· .. .. .. . 

" 

. . . . . . ... . . . . . . ... . . . . .. 

Figure 2 Domain and utilization sets Util 2 and Util4 • 

137 

d - Rank( R) where d is the dimension of the domain. The basis vectors of [{ er( R) 
characterize the utilization set and are called the utilization vectors. They are denoted 
by uE,Y,i (i = 1, ... ,d- Rank(R)). Notice that when R is a full row rank matrix, the 
utilization set is reduced to a single point and does not require any utilization vector. 

The causal dependence associated with a variable Y is classically expressed by depen
dence vectors dY,g(•) = z- g(z). Mongenet eta!. (1991) show that the dependence vectors 
related to a variable Y(z0 ) define a cone characterized by its finite set of extremal vectors. 
These extremal vectors are denoted by dY,zo,er., i E N. 

All points z0 = g(z) which are origin of a dependence vector dY,zo form a set. This set 
is called the emission set and defined by : 

EmitE(Y) ={zoE Dp I 3z E Dp such that g(z) = zo} = g(D). 

Example. The Gaussian Elimination. In the computation equation there are four refer
ences to elements of variable A. We refer to these different references as respectively the 
first, second, third and fourth argument of the computation function and we index the 
corresponding index functions, index matrices, dependence vectors, utilization sets and 
utilization vectors accordingly. 

The first argument corresponds to a uniform dependence characterized by index matrix 
R 1 =/d. The utilization set of any variable A(z0) has dimension 0 and the dependence is 
therefore characterized by a constant dependence vector d1 = (0, 0, 1 ). 

The second and third arguments are both characterized by one-dimensional utilization 
sets since Rank(Rz) = Rank(R3) = 2. The corresponding utilization and dependence 
vectors are respectively: 

Uz = (0, 1, 0) dz = (O,j- io, 1) with 1 ~ j- io ~ n- io + 1 
u3 = (1,0,0) d3 = (i- io,0,1) with 1 ~ i- io ~ n- io 

The fourth argument induces two-dimensional utilization sets since Rank(R1 ) = 1, and 
we have : uu = (1,0,0), u4,2 = (0,1,0) and d4 = (i -i0 ,j -j0 ,1) with 1 ~ i -i0 ~ n-i0 

and 1 ~ j - io ~ n - io + 1. 
The one-dimensional utilization sets Util2 and the two-dimensional utilization sets Util4 



www.manaraa.com

138 Part One Research Papers 

are presented in figure 2. The dotted vectors associated with each of these sets correspond 
to the extremal dependence vectors. The plain vectors correspond to the utilization vec
tors. c 

The interest of considering such PAREs, i.e. single assignment programs, is the sim
ple dependence modeling they induce. Hence, the dependence graphs have their vertices 
aligned on integer points of convex polytopes. The parallelization applies then on a de
pendence graph a spacextime transformation. The transformations classically used are 
linear. They consist in particular in: 

• An affine schedule function of the form t : Dp c zd --+ N with t( z) = A · z + o. It 
defines successive fronts on the domain which are the set of hyperlanes orthogonal to 
the schedule vector A. The causal constraints are classically expressed by a system of 
constraints on the schedule function and the dependence vectors. For a system of PARE 
it is expressed by A · d • ., > 0 for all the extremal dependence vectors dex associated 
with the problem. Among the extremal vectors we call minimal extremal vectors the 
extremal vectors whose schedule component A· d • ., is minimal. We denote them by dmin. 

• A linear allocation function alloc : zd --+ zd-l projects the domain along a uni
modular vector denoted by e E zd and called the allocation or projection direction. It 
results in a set of virtual processors that can be described by a DOALL loop program 
as given hereunder. All the points of D belonging to a given line directed bye define a 
segment called an allocation segment and are projected and executed in the same vir
tual processor, i.e. executed in the same iteration of the corresponding DOALL loop. 
Recall that the schedule and allocation functions must garanty that a virtual processor 
executes at most one computation at any given time step. This requires the condition 
A · e f. 0 to hold. 

Once a schedule and an allocation functions have been determined, the synthesis of 
a parallel solution consists in applying the corresponding linear mapping to the original 
specification of the problem. It transforms the problem expressed in the original domain 
Dp into an equivalent problem defined in a spacextime domain. A virtual parallel solution 
can therefore be given in terms of loops characterized by one sequential loop defining the 
time and a set of DO ALL loops characterizing the processors. 

Example. For the Gaussian Elimination, a parallel solution can be synthesized with the 
schedule A= (1, 1, 1) and e = (1,0,0) as allocation direction. We get the following virtual 
code usually refered as a SPMD code : 

DOALL P(x,y) with 1 :5 y :5 n-1 , y+1 :5 x :5 n+1 
DO t • x+2y-3 TO x+y+n-4 

A[t,x,y] = A[t-1,x,y-1]- A[t-1,y,y-1]xA[x+2y-1,x,y-1]/A[3y-1,y,y-1] 
DONE 

DONE 

This loop can not be transformed into a non single-assignment loop by removing the 
inner index corresponding to the time variable. This is due to the use of A[x+2y-1,x,y-1] 
and A [3y-1,y ,y-1] for the computation of A [x,y] at timet on processor P(x,y). Since 
the source depends on the processor's reference and not on the time index t, the first index 



www.manaraa.com

OPERA: a toolbox for loop parallelization 139 

of A can not be removed in A [x+2y-1 , x, y-1] and A [3y-1 , y, y-1] . These references must 
be defined explicitly by communications and local storage of the data. o 

Such a virtual code does not explicit the communications between the virtual proces
sors. Using OPERA, in particular its dependence modeling, the communications can be 
synthesized in order to get a parallel code with explicit communication primitives, as seen 
figure 5 for the explicit code corresponding to the above single assignment program of 
the Gaussian Elimination. We show in the next section how these communication opera
tions can be automatically determined from the projection of the utilization and minimal 
extremal vectors. 

2.2 Communication synthesis 

OPERA analyzes, for a given problem, how the choice of a particular linear spacextime 
mapping influences the communications between the virtual processors of the parallel 
solution : the number of communications and their nature. We particularly focus on 
two types of communications : the local neighbor-to-neighbor communications and the 
broadcast communications. The results presented hereunder are developped by Mongenet 
(199.''i). 

When dealing with communication synthesis, a user may focus on various constraints 
such as the nature or the number of the communication primitives. OPERA may help the 
user to deal with these two questions : 

• Broadcast utilization. Depending on whether or not we are interested in parallel 
solutions with broadcast, we must add an appropriate constraint to the set of causal 
constraints in order to get a schedule. If we want the solution to be free of any broad
cast, i.e. no variable can be used at a given time step by several processors of the 
DOALL loop, then we add the constraint .\ · uy of 0 for aU the utilization vectors tty 
of the problem. Conversely if we want to take advantage of some broadcast primitives, 
then the constraint A·Uy = 0 should hold for as many utilization vectors ul' as possible. 

• Communication minimization. In order to minimize the number of communica
tions, one must try to localize as many arguments as possible. This can be achieved 
by choosing as allocation direction a vector projecting a utilization set on a minimal 
number of virtual processors of the DOALL loop .. For a one-dimensional utilization 
set characterized by a unique utilization vector u the communication is optimally re
duced with allocation direction e = u. Hence all the corresponding utilization points 
are projected on the same virtual utilization processor and this dependence requires 
at most one communication: from the virtual emission processor (the processor where 
is implemented the corresponding emission point) to the virtual utilization processor. 
If the emission point belongs to the linear space containing the utilization set, then 
no communication is required. For a two-dimensional utilization set characterized by 
two utilization vectors u 1 and u2 , one must choose an allocation direction parallel to 
the plane defined by u 1 and u2 in order to project the plane on a single line of virtual 
processors. 



www.manaraa.com

140 Part One Research Papers 

3 AN OVERVIEW OF OPERA 

3.1 Structure of OPERA 

OPERA runs on X/XView environment. It is compiled with the gee compiler, and flex and 
yaee for the parser. Polyhedra are represented using the Polyhedral Library developped 
at IRISA by Wilde (1993). 

OPERA takes as input a system of parameterized affine recurrence equations defining 
the problem. The syntax of such a specification is similar to the ALPHA language proposed 
by Le Verge et al. (1991) as it was shown in figure 1 for the Gaussian Elimination. Recall 
that OPERA deals with parameterized equations, and therefore all the computations are 
realized using the parameters without instanciating them. 

OPERA visualizes a. synthesized solution by a grid of virtual processors (which can be 
described by a DOALL loop) and by the communication links between these processors. 
It is composed by the following main modules. 

• the dependence modeling module determines the parameterized utilization sets as well 
as the extremal dependence vectors. 

• the schedule determination module solves the system of linear inequalities A · d > 0. 
Depending on the user choice regarding broadcast utilization, the extra constraints 
A · u =J 0 may be added or not. 

• the allocation determination module. This module currently requires the user to choose 
an allocation direction. This will eventually be replaced by the automatic determination 
of several efficient allocation directions, such as the directions minimizing the number 
of communications (cf. Mongenet (1995)). 

These different modules implement algebraic operations on convex parameterized polyhe
dra. In order to help the user to better apprehend the geometrical nature of his problem, 
each of these modules is coupled with a visualization module as shown in figure 3. 

3.2 Algebraic tools on parameterized polyhedra 

OPERA mainly manipulates convex parameterized polyhedra to represent the domains, 
the utilization sets, the fronts. It uses the two dual representations of a polyhedron : 

• the implicit representation : the polyhedron is defined by a set of linear constraints. 
• the Minkovsky rep1·esentation also called the parametric representation by Schrijver 

(1986) : the polyhedron is characterized by a set of lines, rays and vertices. 

To go from one representation to the other, we use the algorithm implemented in the 
Polyhedral Library. It is based on the Chernikova algorithm, successively improved by 
Fernandez and Quinton in 1988 and Le Verge in 1992. Its complexity is O(cl~l) where c 
is the number of constraints and d the dimension of the polyhedron. 

The parameterized domains manipulated by OPERA are defined by the following im
plicit form : 

Dp = {z E zd I p. z :5 Q. p + q} 



www.manaraa.com

OPERA: a toolbox for loop parallelization 

User input 

( PARE 

Change of the schedule vector 

( Broadcast : Yes/No 

(Allocation direction 

Internal structure 

Parsing J 

1 
J Dependence modeling 

I l 
Schedule determination 

l 
Allocation determination 

l 
!code Generation! 

I 

Visualization 

Utilization sets and) 
dependence vectors) 

Fronts 
and latency ) 

Parallel solution ) 

Figure 3 Overview of OPERA. 

141 

where P is a k x d integer matrix, Q is a k x m integer matrix, q is a k integer vector, or 
equivalently by the Minkovsky form : 

Dp = { z E zd 1 z = L . P + R . 11 + v, . v 1 ft, v ~ o, I: v = 1} 

where L is the matrix whose columns define the lines of the polyhedron, while the columns 
of R are the rays and the columns of V, are the vertices. p, p, v are free valued integer 
vectors. 

In order to be able to use the Polyhedral Library and its revisited Chernikova algorithm, 
OPERA represents the parameterized polyhedra in the combined data and parameter 
space as follows : 

D' = { ( ; ) E zd+m I P'. ( ; ) ~ q} 

where P' = [P I -'Q]. 
Using the Minkovsky representation of D', we can find its faces of geometric dimen

sion m called m-faces t. The vertices of the parameterized polyhedron Dp correspond to 
m-faces of its associated polyhedron D' in the combined space. To compute the parame
terized vertex v(p) corresponding to a given m-face, the algorithm described by Loechner 
and Wilde (1995) computes two affine transformations related to this m-face : 

• the first one projects any point of the m-face in the data space zd. Let Projd be its 
associated matrix. 

• the second one projects any point of the m-face in the parameter space zm. Let Projp 
be its associated square matrix. If matrix ProjP is singular then this m-face does not 
correspond to a vertex of Dp (proof given by Loechner and Wilde (1995)). 

t More generally for any convex polyhedron, the faces of geometric dimension 0 define its vertices, the 
faces of dimension l define its edges, ... 



www.manaraa.com

142 Part One Research Papers 

Using these two transformations, each vertex v(p) is defined by : 

• a domain E corresponding to the projection of the m-face on the parameter space. 
It defines the restriction on the values of the parameters for which the corresponding 
vertex does exist. 

• a d x m matrix S = P1·ojd · Proj; 1 • The vertex v(p) is only defined for p E E and 
its coordinates areS· p. This information is used in OPERA to compute the extremal 
dependence vectors, as well a.s the latency, as function of the parameters. 

4 THE GAUSSIAN ELIMINATION ALGORITHM 

From a system of PARE, OPERA automatica.!ly computes the parameterized domains and 
visualizes them for a specified value of the parameters. It also performs the dependence 
modeling and exhibits it both algebraically and geometrically. 

A schedule vector must satisfy the causal constraints A· dex > 0 for all the extremal vec
tors of the problem. Moreover to be free of broadcast, the constraint A· u "I 0 should hold 
for all the utilization vectors of the problem. For the Gaussian Elimination A = (1, 1, 1) 
results in a parallel solution using only local communications. Moreover one can show 
that, in this case, it is the optimal affine schedule with a latency equal to T = 3n - 4. 

If we allow solutions with one-dimensional broadca.'lt communications, we may symmet
rically broadcast the second or third argument, which correspond both to one-dimensional 
utilization sets. Either choice will result in a one-dimensional broadcast of the fourth ar
gument because the corresponding utilization sets are two-dimensional and directed by 
u4,1 = u3 and u4,2 = u2• These two symmetrical solutions correspond to A= (0, 1, 1) and 
A= (1,0, 1). 

One may implement even more broadcast by choosing a schedule vector orthogonal to 
both u2 and u3 , i.e. A = (0,0, 1). This choice results not only in the broadcast of the 
second or third argument, but also in the full broadcast of the fourth one, due to the 
equality of the utilization vectors mentioned above. Notice that this schedule vector may 
be deduced from the observation of figure 2. Hence to get a 2-dimensional broadcast, 
one must schedule all the points of the grey planes in the rightmost window at the same 
instant and therefore choose a schedule vector orthogonal to these planes. 

Let us now show for the schedule vector .X= (1, 1, 1) how the parallel code with explicit 
communication primitives is synthesized. The number of communications ca.n be reduced 
by localizing for example the third argument. In this case we have to choose ~ = u3 = 
(1,0,0) as allocation direction t. Moreover since u4,1 = (1,0,0) the fourth argument 
characterized by two-dimensional utilization sets is also localized on one dimension. The 
corresponding allocation function is alloc(i,j, k) = (j, k). 

The leftmost window in figure 4 shows how the utilization sets Util1 and Util3 are 
projected. The uniform dependence associated with Util1 results in a local communica
tion along the k-axis. Since the dependence related to Utib is localized, the only com
munication is generated by d3min. The projection of d3min is similar to the one of d1 : 

alloc(dt) = alloc(d3m,J = (0, 1 ). Therefore these two dependences result in identical com-

t Notice t.hat the symmetrical solution { = uz = (0, 1, 0) would give analogous results with the localization 
of the second argument instead of the third. 



www.manaraa.com

OPERA: a toolbox for loop parallelization 143 

J 

ra I ' '-

Figure 4 Communication synthesis with A= (1, 1, 1) and ~ = (1, 0, 0). 

munications from processor P:r,y to processor Px,y+l §. Because the two corresponding 
emission sets are disjoint, these two dependences require only one communication per 
time step : the first time according to Utih to transmit the third argument and then 
according to Uti[~ to successively transmit the different values of the first argument. 

Utilization sets Uti/ 2 and Uti/4 require only two communications as shown in the middle 
window in figure 4. The diagonal arrows correspond to the projection of the minimal 
extremal vectors d4min and d2min : alloc(d4min) = alloc(d2min) = (1, 1). The horizontal 
arrows correspond to the projection of the utilization vectors tt2 and u4 ,2 : alloc(u2 ) = 
alloc( tt4 ,2 ) = ( 1, 0). Notice that the two corresponding emission sets are also disjoint, 
therefore they only require one communication per time step. Since utilization vector 
u4,1 is parallel to ~ the fourth argument is localized on one dimension, besides being 
transmitted along the j-axis. 

The corresponding parallel solution is visualized in the rightmost window of figure 4. 
The corresponding parallel code is given figure 5, : in the communication operations the 
processor references are defined in the Send primitives. The processor references in the 
Receive primitives are only given as comments for the reader. 

5 COMPARISON WITH OTHER WORKS AND FUTURE 
DEVELOPMENTS OF OPERA 

OPERA's objective is not to capture the general program parallelization problem, like 
large systems tackling complex real-life applications such as SUIF (Amarasinghe et al. 
1995). We deal with the problem of DO-Loop parallelization and focus on a formal ver
sion of single-assignment loops : the systems of affine recurrence equations. Since OPERA 
manipulates single assignment statements, it does not have to analyze memory access 
conflicts and therefore the dependence analysis is not based on one of the dependence ab
stractions proposed in the literature, such as the Dependence Distance or the Dependence 
Direction Vector. In systems of recurrence equations, the dependences are restricted to 

hn the following t.he parallel solutions are visualized in a 2-dimensional space corresponding to the 2-
dimensional DOALL loop given in section 2.1. We call z the horizontal axis and y the vertical one and 
we denote the processors by Pr ,y. 

, The main objective of this description of a parallel solution is to focus on communications. It does not 
describe the input and output of data. 



www.manaraa.com

144 Part One Research Papers 

Processor P(x,y) 
(x = y + 1 and 1 ~ y ~ n - 1) 

Receive a3 <- P(x,y- 1) 
Receive a4 <- P(x -1,y -1) 
R3 =aa 
R4 = a4 
Send a4 to P(x + 1,y) 
Loop Receive a 1 <- P(x,y-1) 

Receive a2 <- P(x-1,y-1) 
a = a1 - a2 * Ra/ R4 
Send a2 to P(x + 1,y) 
Send a to P(x+1,y+1) 

EndLoop 

Processor P(x,y) 
(y + 1 < x ~ n + 1 and 1 ~ y ~ n - 1) 

Receive a3 <- P(x,y -1) 
Receive a4 <- P(x -1,y) 
Ra = a3 
~ =a4 
Send a4 to P(x + 1,y) 
Loop Receive a 1 <- P(x,y- 1) 

Receive a2 <- P(x- 1, y) 
a = a, - a2 * Ra/ ~ 
Send a2 to P(:t + 1, y) 
Send a to P(x,y+ 1) 

EndLoop 

Figure 5 Explicit parallel code for ..\ = (1, 1, 1) and e = (1, 0, 0). 

true dependences and the corresponding modeling is realized in OPERA using the notion 
of utilization sets. 

Because OPERA manipulates single-assignment statements, it does not require sym
bolic analysis such as loop induction variable identification or loop invariant determina
tion. Since it focuses on fine-grain parallelism, it is not concerned with interprocedural 
analysis or other techniques related to coarse-grain parallelism. Nevertheless, OPERA as 
a fine-gt·ain parallelism analyzer could in the future be embedded in a larger system. 

Its objective is to deal with problems with affine dependences (vs. uniform ones such 
as in Bouclettes, Boulet et al. 1994) and to automatically compute a set of parallel so
lutions for such problems. Among the different parallel solutions, OPERA determines 
the solutions satisfying some precise criteria such as optimal latency, minimization of 
the communications, minimization of the number of virtual processors. Communications 
minimization and locality optimization are determined according to various architectural 
constraints : we focus not only on local communications, but also on broadcast ones. 
Proper choices of affine schedules and allocations result in parallel solutions characterized 
by an efficient use of broadcast primitives if such primitives are available on the target 
architecture. 

To help the user to choose among the many solutions to a problem, we believe that the 
vizualization tools offered by OPERA allow him to better understand his problem through 
a geometrical representation of its domain and its dependences. He may successively select 
various architectural criteria, compare the corresponding solutions in terms of processor 
count, latency or communication volume and choose the most convenient one. 

Compared with· other tools dealing with affine problems, such as COMPAR (Arzt et al. 
1992), OPERA offers a full parametrization of a problem, its domains and dependences, 
and therefore results in parameterized solutions. These solutions are expressed by loops 
whose index bounds and array references are defined as functions of the parameters, as well 
as their latency. This is realized using Loechner and Wilde's representation of the domains 
and dependences by parameterized polyhedra, and the computation of their vertices as 



www.manaraa.com

OPERA: a toolbox for loop parallelization 145 

function of the parameters. Moreover, since OPERA uses theoretical results on polyhedra 
and linear algebra, it guaranties the correctness of the synthesized parallel solutions. 

The current developments in OPERA are concerned with the automatic computation 
of the allocation directions in accordance to the schedule and to the characteristics of 
the target architecture. Our next step will be to implement the code generation. We aim 
at producing either data-parallel code or message passing code similar to the examples 
given in this paper. We are also working on alignment techniques in the context of affine 
dependences. This implies, when focusing on problems defined by several variables, the 
determination of affine-by-variable schedule and allocation functions. 

REFERENCES 

Amarasinghe, S.P., Anderson, J.M., Lam, M.S. and Tseng C.W. (1995) The SUIF Com
piler for Scalable Parallel Machines. Proceedings of the seventh SIAM Conference on 
Parallel Processing for· Scientific Computing. 

Arzt, U., Teich, J. and Thiele, L. (1992) The Concepts of COMPAR- A Compiler for 
Massively Parallel Architectures. Proceedings of IEEE ISCAS, San Diego, 681-4. 

Banerjee, U. (1993) Loop Transformations for Restructuring Compilers, the Foundations. 
[(/uwer Academic Publishers. 

Boulet, P., Dion, M., Lequiniou, E. and Risset, T. (1994) Reference Manual of the 
Bouclettes Parallelizer. Technical report 94-04, ENS-Lyon, France. 

Cytron, R., Ferrante, J., Rosen, B., Wegman, M. and Zadeck, K. (1991) An Efficiently 
Computing Static Single Assignment Form and the Control Dependence Graph. ACM 
1hmsactions on Programming Languages and Systems, 13:4, 451-90. 

Fernandez, F. and Quinton, P. (1988) Extension of Chernikova's Algorithm for Solving 
General Mixed Linear Programming Problems. Technical Report 497, IRISA, Rennes. 

Le Verge, H., Mauras, Ch. and Quinton, P. (1991) The Alpha Language and its use for 
the Design of Systolic Arrays. Journal of VLSI and signal processing, 3, 173-82. 

Le Verge, H. (1992) A note on Chernikova's Algorithm. Technical Report 635, IRISA, 
Rennes, France. 

Loechner, V. and Wilde, D. (1995) Parameterized Polyhedra and their Vertices. Technical 
Report 95-16, !CPS, Universite Louis Pasteur, Strasbourg, France. 

Mongenet, C., Clauss, Ph. and Perrin, G.R. (1991) A Geometrical Coding to Compile 
Affine Recurrence Equations on Regular Arrays. 5th International Parallel Processing 
Symposium, IPPS'91, Anaheim, California. 

Mongenet, C. (1995) Mappings for Communication Minimization using Distribution and 
Alignment. Conf. on Parallel Architectures and Compilation Techniques, Limassol, 
Cyprus, 185-93. 

Pugh, W. (1992) A Practical Algorithm for Exact Array Dependence Analysis. Commu
nications of the ACM, Aug. 199e, 102-14. 

Schrijver, A. (1986) Theory of Linear and Integer Programming. John Wiley and Sons, 
New-York. 

Wilde, D. (1993) A Library for doing Polyhedral Operations. Technical Repor·t 785, IRISA, 
Rennes, France. 

Zima, H.P. and Chapman, B. (1990) Supercompilers for Parallel and Vector Computers. 
ACM Press, Addison Wesley. 



www.manaraa.com

13 
Program Comprehension Engines for Automatic 

Parallelization: A Comparative Study 

Beniamino Di Martino• Christoph W. KeBlert 

Abstract 
We compare two systems for program comprehension that are targeted towards sup

port of automatic parallelization: the PAP recognizer currently included into the Vi
enna Fortran Compilation System, and the PARAMAT pattern recognizer developed at 
Saarbriicken University. We illuminate the main differences, the advantages and disad
vantages of each approach, and show how both approaches may be integrated to combine 
the generality of one approach with the speed of the other one. 

1 Introduction 

Program comprehension is the process of discovering abstract concepts in the source 
code. In its generality, it does not seem automatable; but, given some knowledge on the 
program's application domain, automatic understanding is possible at least on a local 
level. In this case, understanding becomes a recognition process: it can be sketched as 
matching a given source program against a set of known programming patterns. 

A number of problems have to be dealt with when facing automated recognition of 
algorithmic patterns [16]. The most important ones are syntactic variation, algorith
mic variation (a pattern can be implemented in many different ways), delocalization (the 
implementation of a pattern may be spread throughout the code), and overlapping im
plementations (portions of a program may be part of more than one pattern instance). 

Automatic program comprehension systems are mainly used for two purposes: to 
support software maintenance, e.g. for automatic documentation of code, and to support 
automatically parallelizing compilers. Several methods for both areas have been proposed 
within the last years, and some (mostly experimental) systems have been built. Here we 
focus on the second issue. 

Automated program recognition can play a crucial role in overcoming limitations of 
existing tools for automatic parallelization for distributed-memory architectures. For 
instance, replacement of recognized sequential code by suitable parallel algorithms over
comes an important limitation of existing automatic parallelizers that are able to par
allelize some loops but are still bound to the sequential program's control structure. 
Moreover, the acquired knowledge enables automatic selection of sequences of optimiz
ing transformations, supports automatic array alignment and distribution, and improves 
accuracy and speed of performance prediction [8]. 

*Inst. for Software Technology and Parallel Systems, University of Vienna, Austria, and 
DIS - University of Naples, Italy. email: dimartinGpar. UDi vie. ac. at 

fFB 41nformatik, University of'n-ier, D-54286 'n-ier, Germany. email: kesslerGpsi.UDi-trier.de 



www.manaraa.com

Program comprehension engines for automatic parallelization 147 

The application domain considered mainly consists of numerical computations, in 
particular linear algebra and PDE codes. Domain analysis (8] has shown that the size of 
the set of patterns typically occurring in such codes remains reasonably small. But also 
in non-numerical or irregular numerical fields, recognition of algorithmic patterns in the 
code can drive the selection of suitable parallelization strategies, as (4, 5] shows for the 
Divide-and-Conquer pattern in Quicksort implementations and the Branch-and-Bound 
pattern in optimization codes. 

We present two automatic program comprehension engines that have mainly the same 
goals but vary considerably in their methods, properties, and implementations. We com
pare these approaches in detail, showing their advantages and disadvantages, relate them 
to earlier work and conclude with a proposition to combine the speed of one method with 
the flexibility of the other one. 

2 Deterministic Program Recognition in PARAMAT 

PARAMAT's pattern recognizer works on the intermediate representation of the source 
program as an abstract syntax tree. A well-structured and statically analyzable source 
language is assumed. The goal is to annotate as many nodes as possible with a so
called pattern instance, a summary structure that describes which function is computed 
in the subtree rooted at that node, together with the parameter objects of that function. 
Speed and robustness of this method mainly result from exploiting the natural semantic 
hierarchy of the patterns in the library. 

Preprocessing First we apply several normalizing transformations to make the pro
gram as explicit as possible, by inlining all procedures (recursive procedures are very 
untypical for the application area considered), forward propagation of constant expres
sions, recognition and replacement of induction variables, and eliminating dead code. 

Semantic hierarchy of patterns Each pattern consists of a specification of a (math
ematical) operation and of the types and the data structures of its parameters. 

For instance, the MV pattern represents the operation fi = Ab+x, with the parameters 
fi, A, b, and x being real (sub-)arrays (x may also be a constant). 

For each nontrivial pattern, we usually know by experience many implementation 
prototypes (for sequential C code). Because of the wide variety of semantics preserving 
code transformations, the number of such prototypes can be tremendous for more complex 
patterns (such as matrix-matrix multiplication), blowing up the size of an automatically 
generated tree automaton dramatically. For this reason, we formulate the prototypes as 
far as possible by using instances of (other) patterns. E.g., an implementation of matrix
vector product (MV) can be written as a single loop around a dot product 
for (i=l; i<=n; i++) 

SSP( x[i), A[i] [l:m], b[l:m], x[i]); 

or as a loop summing up the result vectors of vector triads 

for (j=l; j<=m; j++) 
VAADDSV( x[l:n], b[j], A[l:n][j], x[l:n]); 

because (Ab + x)i=(i:n] = (E~l A;jbj + X;)i=(i:n] = Ej=l ((A;jbj)i=(i:nJ)j + (x;);=(i:n]· 



www.manaraa.com

148 Part One Research Papers 

With such domain information it becomes straightforward to formulate templates, that 
are the rules to determine a node's pattern m (and pattern instance I) given the node's 
operator and all its children's pattern (i.e., subpattern) instances. In the case of several 
children, we select for each template the most characteristic child, and call the expected 
pattern for this child the trigger pattern. For instance, there is a template for MV with 
trigger pattern SSP, and another one with trigger pattern VAADDSV. For each pattern, we 
realize only the most important templates matching it (typically, we have 1 to 3 realized 
templates per pattern), see [8) for the complete list. 

This natural semantic pattern hierarchy is stored in a directed graph (pattern hierarchy 
graph, PHG) where the patterns are the nodes and for each template an edge goes from 
the trigger pattern to the pattern to be inferred. Thus pattern recognition becomes a 
path finding problem in the PHG. Besides from cycles from a pattern to itself, the PHG 
is acyclic. Different paths towards a pattern m correspond to different implementations of 
the functionality of m. Thus, a linear-sized PHG {and thus, pattern recognizer} represents 
exponentially many implementation variations of the same pattern. 

The PHG has a second important advantage: it serves also as a hash table that can 
be inspected by the pattern recognition algorithm, as it yields immediately all possible 
superpatterns that could be matched from a given trigger pattern. Often, the trigger 
pattern together with the operator of the node to be matched suffices to select a single 
possible template. If there are several templates admissible, these are tested concurrently; 
the result is deterministic. Failing templates abort as soon as possible. 

Recognition algorithm The abstract syntax tree is traversed from left to right in 
postorder. For a leaf node (a variable or a constant}, it is trivial to determine its pattern 
(VAR or CONST, respectively). At each inner node v of the syntax tree, the algorithm 
tests, based on v's operator and v's children's patterns already matched, whether there 
is a pattern m in the library {there exists at most one} which matches the semantics of 
the subtree Tv rooted at v. Selection of admissible templates is done by inspecting the 
PHG. For each of them a short routine is called that realizes that template; it fails if it 
cannot prove that the function computed by Tv equals the operation represented by m, 
and returns an instance I of pattern m otherwise. In the latter case, it also maps the 
program objects to the slots of I (pattern parameters}, and annotates v with I. 

Before trying to match a new loop header, the algorithm distributes [17) that loop as far 
as possible and applies pattern matching to each of the resulting loop headers separately. 
Loop distribution is often supported by scalar expansion [17), using temporary arrays. 

The basic method is extended for pattern matching along 'horizontal' dataflow edges, 
such that several {matched} instructions in the same block that belong to the same pattern 
may be contracted to a single pattern instance, even if they are textually separated. 
Several instructions may belong to the same thread of computation only if their operands 
are involved in at least one of several types of dataflow relations that we denote by dataflow 
edges. These cross edges in the syntax tree represent particular, loop-independent data 
flow relations among the operands of pattern instances within the same block. Thus they 
are well-suited to guide 'horizontal' pattern recognition [9]. Computing exact array data 
flow is generally hard, but here we can profit from the simple array access structures that 
are characteristic for dense matrix computations and that are present in all our patterns. 
Matching along cross edges is particularly helpful to disentangle intermixed computations, 
thus guiding pattern recognition, or to reroll unrolled loops. 



www.manaraa.com

Program comprehension engines for automatic parallelization 149 

Figure 1: The pattern hierarchy 
graph of Matrix-matrix multiplica
tion. Solid edges mean realized tem
plates for 'vertical' pattern recogni
tion; dashed ones for 'horizontal' pat
tern recognition along cross edges. 
Solid cycles mean templates for un
blocking or elimination of semanti
cally invariant conditionals; dashed 
cycles represent templates for loop 
rerolling or integration of initializers. 

Example We demonstrate the pattern recognition algorithm at a simple example. Ma
trix-matrix multiplication is well suited since the functionality of it and of its subpatterns 
is widely known, and since its PHG (Figure I) is rather clear. Suppose the following 
program fragment is given: 

for (i=1; i<=n; i++) { 

S1: 

S2: 
} 

for (j=1; j<=m; j++) 
c [i] [j] = 0 . 0; 

for (j=1; j<=m; j++) 
for (k=1; k<=r; k++) 

c[i][j] = c[i][j]+a[i][k]•b[k][j]; 

~ for j-for j 
t. t 

asugn folk 

c [i~. 0 assign 

c[i~ 
The algorithm traverses the abstract syntax tree from left to right in postorder. First, 

it encounters at S1 a scalar initialization SIN IT (c [i] [j], 0. 0). For the j loop around 
it, we obtain an instance of a vector initialization VINIT( c [i] [1 :m], 0. 0). The access 
to array c has become a vector as one dimension has been bound by the loop. 

Next, assignment S2 is considered and annotated by AADDMUL (c[i] [j], a[i] [k], 
b[k] [j], c[i] [j]) (accumulative addition of a product). Following the suitable PHG 
edge, this yields a dot product for the k loop: SSP (c [i] [j], a[i] [1 :r], b[1 :r] [j], 
c [i] [j]). The accesses to the arrays a and b have become vectors. As the accumulating 
scalar c [i] [j] has not been initialized so far, it has to be entered into the initializa
tion slot of the SSP instance to keep data access information consistent. Then, the do j 
loop around the SSP instance is recognized as an instance of matrix-vector multiplica
tion. Again the accumulating vector c [i] [1 : m] fills the initialization slot. The partially 
matched, unparsed syntax tree now looks as follows (code parts 'below' recognized nodes 
are not shown any more): 

for (i=1; i<=n; i++) { 
VINIT(c[i][1:m], 0.0); 
MV(c[i] [1:m] ,a[i] [1:r] ,b[1:r] [1:ml ,c[i] [1:m]); 

} 
At this point we need data flow information in order to continue recognition. Here we 
obtain that vector c [i] [1 :m] is written in the VI NIT instance, and read and overwritten 
by the MV instance. A cross edge of type FLOW symbolizes that data flows between these 
two instances in an expected way. This situation can be tested by a realization of another 



www.manaraa.com

150 Part One Research Papers 

template for pattern recognition along cross edges. As the template matches, these two 
instances are merged into a single MV instance MV (b[1: r] [1 :m], a[i] [1: r], 0. 0), i.e., 
the initialization slot is now filled by 0. 0 from the VI NIT instance. This instance, in turn, 
can be matched with the i loop into MM(c [1: n] [1 :m], a[1 :n] [1: r], b[1 :r] [1 :m], 0. 0) 
(matrix-matrix multiplication) representing this entire piece of code. 

During pattern recognition, we have followed the PHG paths SINIT ... VINIT and AAD
DMUL...SSP ... MV ... MV ... MM. Common program transformations, like loop interchange 
or loop distribution, would result in a different path being taken towards MM, but would 
not prohibit pattern recognition. 

Postprocessing Finally we must eliminate useless code that may emanate from con
servative cross matching and certain transformations. Instances of unstable patterns are 
decomposed into their basic patterns' instances. E.g., general vector operations are de
composed into simple vector operations using temporary arrays. 

Implementation The current prototype implementation consists of 12000 lines of C 
code and reliably recognizes 91 nontrivial patterns with 150 nontrivial templates. Each 
template realization is implemented as a C routine of 20 to 50 lines. Since many useful 
syntactic and semantic predicates have been predefined, writing code for templates is 
handy and straightforward. More patterns can easily be added. Robustness against 
loop interchange, loop distribution, loop unrolling and statement reordering has been 
exemplified in practice as well as the high speed of the recognition algorithm [8). 

3 Backtracked program recognition: the PAP Recognizer 

PAP (Pamllelizable Algorithmic Patterns) Recognizer is a (prototype) tool for automated 
program comprehension, aimed towards support of code parallelization. It implements a 
plan based technique for the recognition of concept instances in the code, that works in a 
hierarchical way. It provides as output a graphical browser that visualizes the hierarchy 
of recognized concepts and their position in the source code. It is mainly driven by the 
semantic features (control, data dependence, calling relationships) of the concepts. This, 
combined with the backtracking feature of the recognition procedure, offers high flexibility 
that allows to handle non-numerical and irregular codes as well as numerical ones. 

The prototype relies on Prolog as system shell, thus taking advantage of its deductive 
inference engine. It utilizes the structural analysis of the input code performed by the 
Vienna Fortron Compilation System (18) (VFCS) front-end, an interactive compilation 
system for distributed memory parallel computers, in which PAP Recognizer has been 
integrated as parallelization support tool (6). 

Recognition process PAP Recognizer performs a hierarchical parsing process, driven 
by concept recognition rules, that acts on concept instances descriptions. 

The matching rules of the hierarchical concept parsing (plans) are production rules 
that describe the features of the concepts to be recognized. Features identifying an (al
gorithmic) concept can be informally defined as the way some abstract functions (the 
composing subconcepts) are related and organized into a specific abstract control struc
ture. By "abstract control structure" we mean structural relationships, such as control 
flow, data flow and calling relationships. These relationships involve "abstract" objects, 
i.e. aggregates of variables or statements linked by a functionality. 



www.manaraa.com

Program comprehension engines for automatic parallelization 151 

More specifically, each concept is recursively specified by its compositional hierarchy, 
and by relationships and constraints among composing subconcepts. 

With regard to the control and data dependence relationships, to put in evidence their 
peculiarity and to simplify the concepts specification, they are subjected to an abstraction 
process during the recognition, likewise the concept abstraction. Indeed, a notion of 
abstract control and data dependency between abstract concepts has been introduced, 
and defined in a recursive way: a concept instance C; is defined as abstract data (control} 
dependent on another concept instance C;, if the composing subconcepts of C; satisfy a 
particular pattern of abstract data (control) dependence relationships with the concept 
C;; this pattern is characteristic of each concept C;, and is determined by the plan which 
recognizes it. 

The terminals of the recursive specification of abstract concepts, and abstract data and 
control dependence relationships among them, are represented by the set of syntactical, 
control and data dependences on the program, obtained by a structural analysis of it, and 
codified as base concepts and dependence relationships. 

A top-down direction (demand driven recognition) has been chosen for the hierarchical 
parsing. This is due to the particular aim of the recognition process, that is trying to 
find instances of Parallelizable Algorithimc Patterns in the code (algorithmic patterns 
for which a (set of) parallelization strategies can be defined, related to the underlying 
architecture). For this purpose, a recognition of the functionalities of the whole program 
is not needed, and thus a bottom-up parsing is not necessary. If the list of high level PAPs 
to be searched in the code is well defined (especially in relation to the characteristics of 
the underlying architecture), and if the recognition plans are cleverly designed in such a 
way to fail as soon as possible, the top-down approach allows for a deep pruning of the 
search space associated with the hierarchical parsing. 

Abstract program representation The output of the structural analysis phase, that 
is syntactic, control flow, data flow and data dependence informations on the program, 
is utilized to build the Base Internal Representation of the program, which is stored in 
the Concept Instances Database in the form of base concepts. This base level of the rep
resentation is substantially a Program Dependence Graph (PDG), whose nodes represent 
statements and whose edges represent control and data dependences. This slightly differs 
from a standard PDG graph, in that it is augmented with the following structures: 
• control dependence edges are labeled with the branch (true, false) of the dependence, 

and data dependence edges are labeled with the dependence variable identifier and the 
kind of the dependence (loop independent or loop carried); 

• assignment statement nodes are augmented with two tree structures representing its 
left and right hand sides; subscript expressions of array variable instances are like
wise represented by tree structures, linked to the node representing the array variable 
instance; 

• each control statement node is augmented with the tree structure representing the 
control conditional expression; 

• each node of the augmented PDG points to the corresponding nodes of the syntax tree, 
so that a direct reference from the abstract concept recognized to the code implement
ing it is possible; in this respect, the PDG could be viewed as a kind of web; 

• variable definitions are explicitly represented, including information about the type, 
the rank for array variables, and including pointers to the corresponding nodes of the 



www.manaraa.com

152 Part One Research Papers 

Figure 2: Recognition of a tiled implementation of matrix-matrix multiplication 

syntax tree. 

The overall internal program representation is generated during the recognition phase 
performed by the PAP Recognizer. It has the structure of a Hierarchical PDG (HPDG), 
reflecting the hierarchical strategy of the recognition process. Starting from the base 
internal representation, the recognizer performs the concept parsing, following the rules 
specified by the plans. As long as the parsing process proceeds and more and more ab
stract concepts are recognized, they are represented as nodes in increasingly higher layers 
of the HDPG. More specifically, each node representing a concept is linked to the nodes 
of the lower layer representing subconcepts. Abstract control and data dependence edges 
for the newly created abstract concept nodes are inherited from those of the composing 
subconcept nodes, in a way that is characteristic for each concept, and which is deter
mined by the plan which recognizes it. Internal Program Representation is stored in the 
Concept Instances Database which is incrementally updated by the PAP recognizer as 
the recognition advances. 

Features The syntactic variation problem is solved by: (1) characterizing inter-state
ment level concepts with non-syntactic properties like control and data dependence that 
are a better characterization of concepts than other lower level features; (2) taking advan
tage of the backtracking characteristic of the recognition procedure to perform symbolic 
analysis of expressions within statements. The delocalization problem is solved by the 
characteristics of the abstract program representation which: (1) is based on an inher
ently delocalized structural representation (PDG)i (2) has a global scope of visibility, so 



www.manaraa.com

Program comprehension engines for automatic parallelization 153 

that the active rule can attempt to match all instances of concepts already recognized, 
at every level of the abstraction. The implementation variation problem is solved by the 
backtracking feature of the recognition process. More specifically, backtracking allows the 
specification of one concept by means of multiple plans: each plan specifies a different 
algorithmic implementation of the same concept. Finally, the overlapping implementation 
problem is solved by the global scope of visibility of the representation, and by the fact 
that the parsing mechanism does not restrict the use of a subconcept to one plan, allowing 
the recognition even in presence of shared concept instances. 

An important consequence of the features just discussed is the independence from 
restructuring techniques, that modify the original code before and during the recognition 
process to deal with delocalized code and implementation variations. This means that 
this approach does not need a canonical form for concept implementations. 

Example We show how an instance of the matrix-matrix multiplication algorithmic 
pattern, implemented with tiling of the iterations, is recognized in a code fragment. Fig. 2 
(upper window) shows the Fortran program segment normalized by the VFCS front end. 
This version is analyzed by the PAP Recognizer, and Fig. 2 (lower window) shows the 
hierarchical structure of the recognized pattern, in the form of a graph. By clicking on 
each of the graph nodes, representing a composing subconcept, it is possible to highlight 
the corresponding code implementing it, as shown in the figure for the overall concept 
instance. As can be seen in this figure, the tool is able to recognize the concept in 
the presence of a temporary accumulator variable for the scalar-product subconcept; the 
implementation variation represented by the tiling is recognized by composing the matrix 
multiplication concept with the concepts of strip mining and loop interchange, as can be 
seen in the figure representing the hierarchical structure. 

4 Detailed Comparison 

Determinism Both approaches are hierarchical. But there is a decisive difference: 
The PARAMAT recognizer is deterministic: each syntax tree node can carry at most 

one pattern instance which summarizes anything that is contained in the subtree below 
it. This is made possible by applying loop distribution. Moreover, the PARAMAT recog
nition is leveled: Because at each level there is only a very limited number of candidates 
that may match the node, the speed of recognition is very high. 

The PAP Recognizer applies backtracking: this allows for dealing with implementation 
variations and delocalization of concept instances. Moreover, the concept matching is 
not limited in the level of abstraction: the particular structure of the abstract program 
representation (the hierarchical abstract PDG) make it possible to have a global scope of 
visibility of the recognized subconcepts, thus allowing the recognition even in presence of 
sharing of concept instances. These two features make recognition more powerful, but also 
make the search complexity grow exponentially with the code size. Nevertheless, both 
the top down approach, that permits to not inspect all the code, and the summarization 
of derived subconcept within HPDG nodes, prune the search space considerably. 

Program representation and representation of recognized features The PA
RAMAT recognizer uses the abstract syntax tree of the source program as intermediate 
representation. Data flow information is computed incrementally during the recognition 



www.manaraa.com

154 Part One Research Papers 

I system II PAP Recognizer I PARAMAT pattern recognizer 
direction top-down bottom-up 
driving features syntax and semantic driven syntax driven (data flow used 

(control, data dependence) to deal with delocalization) 
backtracking yes, essential for the method not necessary (deterministic) 
restructuring not necessary for the method essential ( canonicalization) 
preprocessing not necessary necessary 
power of more powerful (sharing, delocali- less powerful 
recognition zation, variation of implementations) 
speed slow fast 
goals alignment and distributions selection; alignment and distributions sel., 

replacement by library routines replacement by library routines 
only if coupled with restructuring; 
template based par. code generation 

Table 1: Main differences between the two approaches 

process and only where needed. If required, the syntax tree can be transformed during 
the recognition process. - A recognized code portion, here always identical to a subtree 
of the abstract syntax tree, is summarized in a pattern instance which annotates the root 
of the matched subtree. The pattern instance contains all the information of what is 
computed in that subtree (but not any more how it is computed). A pattern instance I 
annotating a node v can be used for two purposes: (1) It can be used to determine the 
pattern of the father of v. There is no need of I for the recognition process any more after 
v's father has been also matched. (2) It offers the possibility of code replacement. 

The PAP Recognizer starts using the PDG as intermediate representation. During the 
recognition process, it builds upon the PDG an abstract hierarchical PDG that represents 
the hierarchy of recognized concepts. Although associated with specific program locations 
and program objects, this abstract representation is not limited in its scope of visibility 
but globally visible, thus allowing for subconcept sharing and recognition of delocalized 
concepts. Each derived subconcept is summarized in its functionality, compositional hier
archy and linking to the syntax tree nodes (and thus to the code segments implementing 
it) by its node in the HPDG. 

Recognition process The PARAMAT recognizer is driven by the syntax tree structure 
and by the data flow edges computed meanwhile. Each instance of a recognized pattern 
is one-to-one linked to a node in the abstract syntax tree. This makes pattern recognition 
deterministic and relates recognition to a traversal of the abstract syntax tree. 

The PAP recognizer is driven by control and data dependence relationships of the 
(inter-statement level) concepts. The parsing process is not related to a syntax tree 
traversal; it is rule based and with backtracking feature. Rules are applied on a globally 
visible abstract program representation. Although this characteristic in principle increases 
the complexity of the process, the systematic use of control and data dependence relation
ships to characterize concepts allows the application of rules to be driven by the locality 
typically present in the source program. In this way complexity can be maintained at an 
acceptable level, without constraining the delocalized recognition capability. 



www.manaraa.com

Program comprehension engines for automatic parallelization 155 

Restructuring during recognition PARAMAT's recognizer relies on powerful re
structuring transformations such as loop distribution or scalar expansion. This simplifies 
loop bodies and allows to apply a simpler pattern matching algorithm. The modifications 
of the source program are motivated by the application domain (replacement by paral
lel routines) and are compatible with the code replacement algorithm [10]. The most 
important transformation in this context is loop distribution because it allows to factor 
out different computations from the same loop nest that can be matched separately by 
different patterns (and thus result in separate code being generated). 

The PAP Recognizer doesn't need to restructure during recognition because it is not 
based on canonicalization of concept implementations. Syntactic variations (as textual 
nesting) are instead as much as possible made transparent to the recognition process by 
using non-syntactic features like control and data dependence. For the same reason, the 
approach doesn't need (if not to speed up the recognition) preprocessing transformations, 
and can thus deal with situations where these cannot be applied. 

Sharing The PARAMAT recognizer restructures the program and applies loop distri
bution to factor out the shared code portions as far as possible. It then decides (if not 
directed by data dependences, by using a heuristic) the order of pattern instances and 
assigns shared code portions to the first of them. The intermediate results of the shared 
code portions used by subsequent pattern instances must be written to temporary vari
ables. This is necessary because the goal is code replacement. Simple duplication of 
common code is not provided; indeed that would lead to incorrect code in some cases. 

The PAP recognizer has no problems with code portions shared by several patterns, 
because of the nonlevelled and nonlocalized matching mechanism, and because of the 
possibility to reuse derived subconcepts for other matchings. 

5 Related Work 

Several automatic program comprehension techniques have been developed over the last 
years. They vary considerably in their application domain, method, and status of imple
mentation. 

Earlier work targeted towards automatic code optimization or paralleliza
tion Snyder [15] addresses idiom recognition in APL codes. His algorithm is an extended 
depth-first traversal of the abstract syntax tree with linear expected run time. He applies 
dynamic programming techniques to select the most profitable idiom in the presence of 
overlapping idioms, which appears to be common in APL programs. - [3] suggests (non
constructively) to apply pattern matching techniques for the detection of reductions and 
recurrences within the framework of a formal system for automatic shared memory par
allelization. -EAVE [2] is an expert system for interactive vectorization of FORTRAN 
programs. It contains a simple pattern matching tool that can decover order 1 patterns 
(vector operations, reductions). -The pattern matcher of [12] works on a modified pro
gram dependence graph that has been extended in a special way to match certain loop 
structures with the goal of replacing them by parallel algorithms. The cost of recognition 
is higher because the rewrite rules form a graph grammar. Normalization of the PDG 
has to be provided interactively by the user. - [13] proposes a special approach for re
currence detection. While this method offers, at considerable computational effort, the 
recognition of rather general and multidimensional recurrences, a number of assumptions 



www.manaraa.com

156 Part One Research Papers 

are made that are hardly met by real applications. As complicated recurrences are rare in 
real programs, the computational effort of this approach seems not justified. - CMAX 
[14] is the only commercial application of pattern matching with regard to parallelization. 
It translates FORTRAN77 programs to CM-Fortran, a parallel vendor-specific Fortran 
dialect similar to Fortran90. It recognizes syntactically several common loop constructs 
(vector operations, reductions, matrix-matrix multiply) but does not distinguish between 
patterns and templates. The recognition power is slightly weaker than PARAMAT's, 
but the main advantage of CMAX is its ability to recognize FORTRAN-specific storage 
conventions and to transform them to make the program machine-independent and more 
suitable to distribution of data in that point. - Similar to the systems compared in this 
paper is the first phase of a program comprehension system for FORTRAN programs 
sketched in [11]. It works top-down on the PDG and partly uses the algorithm from [15]. 

Other problem domains Some systems for program comprehension in a non
numerical domain are targeted towards automatic documentation and support of soft
ware maintenance. Plan Calculus [16] represents code and patterns (called "cliches") 
with graph structures whose nodes correspond to subconcept instances and whose arcs 
capture control and data flow relationships among them. Cliches recognition becomes 
thus a graph parsing process using a set of graph grammar rules. It produces a parse tree 
representing a hierarchical description of plausible concepts of the program. -PAT [7] 
uses an abstract, object-oriented representation for syntactic and semantic concepts com
posing the program. Each concept is an instance of a concept class, and the classes are 
hierarchically structured. Our templates are roughly comparable to their "plans"; a plan's 
representation consists of a description of the syntactical components and a description 
of the constraints to be satisfied by components. An inferential pattern-directed engine 
derives new higher-level concepts from the existing ones, utilizing plans as inference rules. 

6 Conclusion 

We have presented two systems for automatic program comprehension, the PARAMAT 
pattern recognition tool and the PAP recognizer. Both systems are targeted towards 
comprehension of numerical codes (even though the flexibility of the second approach 
makes it suitable to deal with irregular or non-numerical code too) with the goal to 
support automatic parallelization. 

Nevertheless, the systems vary considerably in their methods, properties, and imple
mentations. While, roughly speaking, PARAMAT's pattern recognizer provides accept
able (for the given domain) recognition power at impressive speed and its output is suited 
for code replacement more straightforwardly, the PAP recognizer offers more flexibility 
and generality at the expense of higher run time. Thus, there is just a tradeoff between 
power of recognition and speed to be deliberated before choosing the one or the other 
system for a certain application program, depending on its size and complexity. 

We are currently studying the possibility and effectiveness to combine both approaches. 
One possibility could be the following. If recognition time is very critical, we recommend to 
use PARAMAT's pattern recognizer for longer codes. For shorter codes, or if recognition 
time is less critical, the greater flexibility of the PAP recognizer should be exploited. 
If pure PAP recognition takes too much time and one is willing to trade recognition 
power for time, we propose that the PARAMAT pattern recognizer could be run as a 



www.manaraa.com

Program comprehension engines for automatic parallelization 157 

preprocessor; the pattern instances produced become then facts for the PAP recognizer. 
Restructuring done by the PARAMAT recognizer is finished before the PDG for PAP 
recognition is constructed. The already recognized program parts are not submitted to 
PAP recognition any more, resulting in a downsized PDG. This corresponds to explicit 
a priori pruning of the PAP search tree and clearly limits the flexibility of the PAP 
recognizer. The degree of preprocessing could be modified by the user, e.g. by limiting 
PARAMAT's recognition to some restricted set of patterns. It is up to the user to decide 
about that when recognition time is critical. 

References 
(1] S. Bhansali, J.R. Hagemeister, C.S. Raghavendra, H. Sivaraman, "Parallelizing sequential 

programs by Algorithm-level Transformations", 3rd IEEE Workshop on Program Compre
hension, Washington, Nov. 1994. 

(2] P. Bose. Interactive Program Improvement via EAVE: An Expert Adviser for Vectorization. 
Int. Conf. on Supercomputing, pp 119-130, July 1988. 

(3] T. Brandes, M. Sommer. A Knowledge-Based Parallelization Tool in a Programming En
vironment. Int. Conf on Parallel Processing, pp 446-448, 1987. 

(4] B. DiMartino, G. Iannello. Towards Automatic Parallelization through Program Compre
hension. 3rd IEEE Workshop on Program Comprehension, Washington, Nov. 1994. 

[5] B. Di Martino, B. Chapman. Program Comprehension Techniques to improve Automatic 
Parallelization. Workshop on Automatic Data Layout and Performance Prediction, Rice 
University, Houston TX, Apr. 1995. 

(6] B. DiMartino, B. Chapman, G. Iannello, H. Zima. Integration of Program Comprehension 
Techniques into the Vienna Fortran Compilation System. Int. Conf. on High Performance 
Computing, New Delhi (India), Dec. 1995. 

(7] M. Harandi, J. Ning. Knowledge-Based Program Analysis. IEEE Software, Jan. 1990. 
(8] C.W. KeBler. Automatische Parallelisierung numerischer Programme durch Mustererken

nung. PhD thesis, Universitat Saarbriicken, 1994. 
(9] C.W. Kefller. Symbolic Array Data Flow Analysis and Pattern Recognition in Dense Matrix 

Computations. IFIP WG10.3 Working Con/. on Progr. Environments for Massively Par. 
Distr. Systems. Birkhauser, Apr. 1994. 

(10] C.W. Keiller. Pattern-Driven Automatic Program Transformation and Parallelization. 3rd 
EUROMICRO Workshop on Parallel and Distributed Processing, San Remo. Jan. 1995. 

[11] R. Metzger. Automated Recognition of Parallel Algorithms in Scientific Applications. Work
shop on Plan Recognition at IJCAI'95, Aug. 1995. 

(12] S.S. Pinter, R.Y. Pinter. Program Optimization and Parallelization Using Idioms. ACM 
SIGPLAN Principles of Programming Languages, pp 79-92, 1991. 

(13] X. Redon, P. Feautrier. Detection of Recurrences in Sequential Programs with Loops. 
PARLE 93, Springer LNCS vol. 694, pp 132-145, 1993. 

(14] G. Sabot, S. Wholey. Cmax: a Fortran Translator for the Connection Machine System. 
Int. ACM Conference on Supercomputing, pp 147-156, 1993. 

(15] L. Snyder. Recognition and Selection of Idioms for Code Optimization. Acta Informatica, 
17:327-348, 1982. 

(16] L.M. Wills. Automated Program Recognition: a Feasibility Demonstration. Artificial 
Intelligence, 45, 1990. 

[17] H. Zima, B. Chapman. Supercompilers for Parallel and Vector Computers. ACM Press 
Frontier Series. Addison-Wesley, 1990. 

(18] H. Zima, B. Chapman. Compiling for Distributed-Memory Systems. Proc. of the IEEE, 
Special Section on Languages and Compilers for Parallel Machines, Feb. 1993. 



www.manaraa.com

14 
Concurrent semantics for structured 
design methods 

P.A. Nixon and L. Shi 
Department of Computer Science, 
Trini~y College, The University of Dublin, Dublin 2, Ireland. 
Department of Computing, 
Manchester Metropolitan University, Manchester, U.K. 
Email: Paddy. Nixon@cs. ted. ie, L. Shi@doc. mmu. ac. uk 

Abstract 
Design methods can be ambiguous due to different interpretations of symbols or concepts. 
This paper presents a formal semantics for the Ward/Mellor Structured Analysis Method 
for Real Time systems. These semantics ensures that an unambiguous meaning can be 
attributed to a particular design. Specifically, it ensures that concurrent and real-time 
properties of the design can be captured and analysed. This paper concentrates on the 
concurrent properties. 

Keywords 
Structured methods, Concurrency, Real-time systems 

1 INTRODUCTION 

Due to the inherent complexity of the task, the design of quality software is notoriously 
difficult. Worse still, the need for concurrent or real-time properties to be modelled fur
ther complicates the task, Birkinshaw et a! (1994). To ease the process many design 
methods have been proposed which provide the software designer with notations and 
structures for software construction. In the real-time domain the most popular are due 
to Hatley/Pirbhai (1987), and Ward/Mellor (1986) , which are based on original work by 
DeMarco (1978). These methods aim to allow all the properties of the proposed system, 
including concurrency and timeliness, to be expressed in clear, unambiguous manner. 

Nevertheless, for many reasons both technical and cultural, these diagramatic designs 
can be misinterpreted. To ensure rigorous definitions of the designers tools are made, 
formal semantics can be associated with the graphical methodology. This allows the de
signer to continue with a prefered method, whilst introducing the ability to analyse the 
design from a formal persepective and so removing ambiguity in the design. Work done 
by Elmstrom eta!, (1994) has shown the benefits of applying Petri Nets as a semantics for 
real-time design methods as part of the IPTES project. Yet they point out that a major 



www.manaraa.com

Concurrent semantics for structured design methods 159 

Translalion rrocess 

FORMAL SEMANTICS 

Figure 1 Notion of formal translation (Elmstri'Jm eta!, 1994). 

barrier to the widespread application of such formal semantics is that such processes can 
be very complex. A promising solution to the complexity problem is the use of composi
tional semantics. Namely, the translation process from design to formal representation is 
localised so that small parts of the design can be translated independently of other parts 
of the design. This independent translation can then lead to high speed translations and 
facilitate early analysis of parts of the design. This paper gives details of such a composi
tional approach. The paper concentrates on issues of concurrency, a complete description 
of the translation process is presented in Shi and Nixon (1995) and a detailed analysis of 
complexity for the translation is presented in Shi and Nixon (1995a) 

2 BRIEF INTRODUCTION TO METHOD AND TIMED ER NETS 

The particular method considered here is a the Extended Systems Modelling Language 
(ESML) of Rruyn eta! (1988), which is a real-time extension of Tom DeMarco's structured 
analysis method based on data flow diagrams. Figure 2 gives the basic components of the 
model. The notations are defined as: 

1. Transformations : 
A data transformation is an abstraction of a low-level system function, e.g. transforming 
data inputs into outputs, modifying stored data, or reporting some occurrence of event, 
etc .. 
A control transformation controls the behaviour of other data/control transformations, 
e.g. deciding when or for how long the controlled transformations are active. 

2. Data flows: 
A discrete data flow {ddf) is associated with a value only at discrete point of time, i.e. 
it is intermittently available. A continuous data flow {cdf) is associated with a value 
defined continuously over a time interval, i.e. it is continuously available. 
A signal is a non-value bearing data flow, it only reports that something( an event) has 
happened at discrete points of time. 



www.manaraa.com

160 Part One Research Papers 

CON'JROL FLOWS 
TRANSFORMAnONS DATA FLOWS STORES (/PROMPTS) 

Vlluellarin! .:r~~ 

G ~ ........ -~1~ 

-dolallow .P!~~)~ 

-~~!.. 

...... -~!.. 
Non-VIIue ll<orioc IUier 

' ' -~~~) ' 
--~---~ ' C<mol : 

' ' -~~L 

Figure 2 SA/RT notation 

3. Stores: 
A data store acts as a repository for data that is subject to storage delay, and it is 
an abstraction of a file. A buffer actually is a special type of data store in which flows 
produced by transformations are subject to a storage delay before being consumed by 
other transformations. It is an abstraction of a stack or queue. 

4. Control flows (or Prompts): 
Prompts represent control imposed by one control transformation on another data/ control 
transformation, which include: 

• Trigger: A Trigger causes a flow transformation to perform a time-discrete action 
such as producing a data flow. 

• Enable and Disable: An Enable/ Disable prompt initiates/terminates the activity of 
a transformation. When a transformation is disabled, it "forgets" any intermediate 
results and starts anew when enabled. Activate is a combination of Enable and 
Disable. 

• Suspend and Resume: Suspend and Resume prompts are similar to Enable and Dis
able, except that a suspended transformation remembers its intermediate results 
and the system context and picks up where it was left off when resumed. Pause is a 
combination of Suspend and Resume. 

5. Flows from multiple sources and to multiple destinations may be represented by a 
splitting/merging notation. 

These components are then used to construct a model, or specification, which captures 
the data flow through the proposed system. Control of the data flow is expressed by 
control transformations. Concurrency is not explicitly specified in the design but is often 
assumed. Equally, temporal characteristics are applied in the control aspects of the design. 
For complete details of the method the reader is refered to Rruyn et al (1988). 



www.manaraa.com

Concurrent semantics for structured design methods 161 

2.1 Timed ER Nets 

A high level net model is used here and in Elmstr121m et al (1994) to give a semantic 
definition to the elements of ESML, in particular capuring the temporal and concurrent 
aspects of the design. The specific net model used is a Timed Entity Relation net. Entitity 
Relation (ER) nets are Petri Nets were tokens and transitions are given different interpre
tations. The tokens correspond to environments, essentially functions that can assocaite 
values with variables. Transistions have actions associated with them, which can effect the 
tokens. Timed ER (TER) Nets extend the ER notation by attaching a variable chronos 
to every token, the value of which is a timestamp. This variable is modified by transitions 
which produce the timestamps. The usual Petri Net conventions apply to TER Nets with 
some small differences; the interested reader is refered to Ghezzi er al (1991). As pointed 
out by Ghezzi, TER nets are general enough for the requirement specification of most 
complex real-time systems; yet, most of the usual temporal properties are undecidable 
in TER nets. But generally, the TER nets can assist the analysis of specifications in the 
following ways: 

• to restrict the analysis to special decidable subcases corresponding to special classes of 
applications; 

• to derive approximate solutions : by ignoring token values, we reduce TER nets into 
low-level (timed) Petri nets. So in general, all known techniques for analyzing (timed) 
Petri nets can be used as approximate analysis aids in the case of TER net; 

• to provide interactive decision-support systems to assess them; 
• to test specifications by simulation. 

Timed ER nets have been chosen as the formal model for the semantics of ESML for 
these reasons. 

3 TRANSLATION 

A translation, or formal semantic definition, of a design must capture the intentions of 
the designer in an unambiguous manner. Consider the example, figure 3, to translate the 
simple construct of storing and retrieving data from a data store. Data transformation 
A places data in the store C and at some point in the future data transformation B 
retrieves it. The definition of ESML states that the data store can be viewed as a queue, 
so the order of arrival of the data is important. To ensure that the design has made the 
correct assumptions about the data store, and not overlooked the details of the ESML 
definition, a formal interpretation of the design can be extracted from the original and 
then animated using the petri net rules. Thus, the behaviour of the design can then be 
relayed to the designer. 

There are many possible ways of describing a given meaning for a diagram in petri nets, 
some more complex than others. The complexity is the key issue which must be kept to a 
minimum. For instance, for the data store described above a possible petri net description 
could included at least n places, n transitions, and n arcs to capture the n element queue 
which defines the buffer (where n is the size of the buffer). Alternatively, a buffer could 
be described by a single place, two arcs, and two transitions (see figure 4). The TER 



www.manaraa.com

162 Part One Research Papers 

c 

Figure 3 a simple construct 

..... -- .. ---- ... 

' ' : A 

Add 

. . 
. 
I 
' 

' ' ' ' ' 
B 

Figure 4 a simple semantics 

Remove 

net transitions correspond to functions. The transition for placing an element in the data 
store simple adds a timestamp, or chronos value, to the data stored. The transition to 
remove data ensures that the next data element removed is the elment with the lowest 
chronos value, i.e. the top of the queue. 

A significant way of reducing complexity and improving efficiency is to use composi
tionality. This aims to modularise the semantics of the given structured method, ESML 
here, thus producing smaller nets to construct and analyse at a given time. The inteface 
between modules, or components, is well defined so that they can be combined without 
invalidating the work done on the indivdual components. 

4 COMPOSITIONALITY 

Some assumptions have to be made before any translation begins. Particularly, it has to be 
assumed that the SA/RT design is complete. By this it is meant that the usual top-down 
process of refining the abstract high level designs into more concrete low level refinements 



www.manaraa.com

Concurrent semantics for structured design methods 163 

v v 

'' 
[~}'X 

CONI'EXT 

I 

~~ 
X J.; MlxleD-EE 

Figure 5 a hierarchical transformation schema 

has taken place, Thus the translation process is dealing with a meaningful design, what 
ever that means. Also it is assumed that the complete specification is flattened. This means 
that the hierarchies have been removed in such a way as to leave a complete design. Figure 
6 is a flattened version of Figure 5 taken from Ward and Mellor (1986). 

The most important principle of the proposed translation of the is compositionality 
(or locality), i.e. the translation of each component is independent of other components. 
The concept of component is defined first and then the principle of compositionality is 
illustrated. 

A component is either a data or control transformation together with all its inputs and 
outputs, or a merging or splitting structure representing a flow from multiple sources or to 
multiple destinations. Figure 7 illustrates a transformation schema with five components 
Cl-C5, where Cl-C3 are data transformations, C4 is a control transformation, and C5 is 
a merging structure which merges ddfl and ddf2 to ddf3. The interface of a component 
includes all the data/control flows to/from it. For example, C3 is a data transformation 
with ddf3, Enable and Disable as input interface, and with ddf4, buf as output interface; 
C5 is a merging structure with ddfl and ddf2 as input interface, and with ddf3 as output 
interface. 

In the translation, each component corresponds to a TER subnet, or simply a TER 



www.manaraa.com

164 Part One Research Papers 

Figure 6 flattened transformation schema 

net. Each flow or store connecting components in the transformation schema corresponds 
to a place (or some places) shared by their corresponding TER subnets. The translation 
rules are compositional (or localized) because each component in an SA/RT model can 
be translated into a TER subnet independently, and the TER net corresponding to the 
SA/RT model as a whole can be obtained by combining these TER subnets via shared 
places. 

Figure 8 illustrates a TER net structure corresponding to the transformation schema 
TSl in figure 7. Rectangles C;(l ::; i ::; 5) represent TER subnets for components C; in 
figure 7. Those flows in TSl are all translated into shared places outside the rectangles. 
For example the discrete data flow ddfl from component Cl to C5 in TSl corresponds 
to a place shared by subnets Cl and C5 in the subnet for TSI. To simplify the situation, 
it is assumed in this example that each data/control flow corresponds to one place, the 
same the principle is followed when some flow corresponds to more than one place, or 
some group of flows share one place. Those places with no input or no output arcs, e.g. 
cdfl and ddf4, correspond to flows to or from outside the schema. So the TER net as a 
whole is just the composition of all the five TER subnets that share interface places. 

The assumption above that each flow corresponds to one place is not always true. For 
data flows other than data stores, two places are used for each flow as in figure 9(a,b,d); 
and for a control transformation, two places are used to represent all its input prompts, 
as illustrated in figure 9(e). 

The mapping rules for flows and stores are illustrated in figure 9. For any place p, 
P - cdf' is the complement (or empty) place of p, e.g. the token in p' in figure 9(b) 
denotes that no data is attached with cdf, in other words cdf is empty. 

Lets consider the translation rules for control flows and data flows in detail. Rules for 
other data flows in figure 9(a-c) are derived similarly and full details can be found in Shi 
and Nixon (1995). 



www.manaraa.com

Concurrent semantics for structured design methods 

cd \ 1ds 1/ 
' I 
' I 
' I E, I)' I 

' \ , 
" .... , "' .. , , v 
I ' 
I C4 I sizl 

siJI .. ..,!, f«- ...... __ ...... \ ,' ·. , 

Figure 7 The concept of component in transformation schema TSl 

Figure 8 The compositional principle of translation for TSl 

165 



www.manaraa.com

166 Part One Research Papers 

G--G s-·-·---G 

........ 

GJ--~---GJ 

4.1 Translation of control flows 

The translation in Elmstrfl)m et al (1994) is not compositional in that some SA/RT con
structs are not translated independently. The main problem lies in the translation of 
control prompts, which are translated as transitions, and depend on the types, and even 
internal structurals of all the transformations that receive them. This problem is solved by 
translating all control prompts going to the same transformation as two complementary 
shared places, and making the translation of the controlling and controlled transforma
tions independent of each other. 

Figure 9(e) illustrates the translation method for control prompts. Tl is a control 
transformation which controls a (data or control) transformation T2. In the TER net, all 
the control prompts of T2 share two complementary places T2.C and T2.C'. The token 
in T2.C' indicates that no control prompt is present, and a token in T2.C would carry 
the information of the control prompt to T2. The TER subnet for Tl has a transition 
X_write to produce the control prompt X; while the TER subnet for T2 has a transition 
X _read to consume the prompt X. But the form and number of such X _write or X _read 
transitions may vary, and they depend only on transformation Tl or T2. 

Note separate places are not used here for different control prompts as for data flows. 



www.manaraa.com

Concurrent semantics for structured design methods 167 

Tl 

'"' (h) 

Figure 10 Translation principles for control prompts : an example 

Consider the simple example as illustrated in figure lO(a), where two places E12 and D12 
are used to represent the two prompts Enable and Disable sent by Tl to T2 respectively. 
The control prompts Enable and Disable are generated by the automaton of Tl in an or
derly manner, but with the same timestamp. When time is rtot considered in the analysis, 
the control prompts may not be consumed in the same order as they are produced, since 
for transitions £_read and D_read it is indeterminate which one fires first when their 
preset places have the same value in chronos, or when time is not considered. But usually 
it is required that the prompts be consumed in the same order as they are produced. This 
problem can be solved by our method by using shared places for all control prompts, as 
in figure lO(b), where T2.C is safe by initially putting one token in its complementary 
place T2.C'. So all the control prompts of T2 are accepted and consumed in an orderly 
manner by this translation. 

The names, e;, d;, s;, r; and g; (where i = 1, 2, ... ) are used to indicate transitions that 
consume the Enable, Disable, Suspend, Resume and Trigger prompts respectively; arcs 
connected to these places can be omitted to ease reading. 

4.2 'Iranslation of Data 'Iransformations 

The next step is to consider the translation of data transformations. The concepts of 
active data and active input are important for understanding a data transformation. An 
active input arrives independently of any action of the receiving transformation, and 
activates the transformation when it is available (i.e. in idle state). An active data output 
is created by the activity of a data transformation, and can be an active data input for 
another transformation. The following definitions are assumed: 

• Active data : a ddf not connected with data store or a signal 
• Nonactive data: a cdf or a ddf connected with data store 
• Active input : an active data input, or a Trigger prompt input * 

According to the definitions above, data transformations can be placed into two classes: 

1. Data transformations with an active input 
inputs:: 
active...data{ nonactive...data }[Activate)[Pause) 

*Note that the definition of active input in Ward (1986) does not include Trigger. Here we include Trigger 
to make the following description simpler. 



www.manaraa.com

168 Part One Research Papers 

I Trigger{ nonactiveJiata }[Pause) 
outputs:: {active..data}+{data...store} 

2. Data transformations without active input 
inputs :: { nonactiveJiata} +[Activate)[Pause) 
outputs :: { nonactiveJiata} + { active..data} 

When there is more than one active data in the output part of a data transformation, 
they are interpreted as alternatives; only one of them can be produced at a given time. 
We will consider the translation of the first of these here, translations for the other data 
transformations can be found in Shi and Nixon (1995). 

5 CONCLUSIONS 

Whatever method is used, the complexity of simulation and analysis of Petri nets grows 
with their size, especially the numbers of transitions and arcs. So the efficiency of simu
lation and analysis crucially depends on the efficiency of the translation. 

The compositionality of the translation process benefits the development process of 
SA/RT specification models in the following aspects: 

• Assisting the interactivity of the development process of SA/RT specifications 
The development of an SA/RT specification is quite an interactive process. The users 
modify the specification, and expect a responsive change in the corresponding ani
mation and analysis. The compositional translation localizes the modification of the 
underlying subnets, thus improving the efficiency and interactivity. 

• Assisting the incremental development of specifications 
In many occasions, the development process of a specification can be incremental. For 
example, a critical part of the specification may be developed and its critical prop
erties need to be analyzed first. The Compositional translation allows the translation 
and analysis of part of the model, thus supporting the incremental development of 
specifications. 

• Assisting modular development and analysis of specifications 
Any module in transformation schema can be translated independently into a Petri net 
module; Petri net modules can be combined just by shared places. Modifying any part of 
the specification only results in localized modifications of the underlying net and other 
parts, including their properties, will be kept intact. Thus the compositional translation 
is essential to the compositional/modular development and analysis of specifications. 

In summary, the compositional and efficient translation given here can benefit the 
analysis and the development of SA/RT specifications. The work has also highlighted 
the importance of the modularity/compositionality of TER nets. 

Future work will include investigation into the compositionality of temporal properties 
and their transformation into HLTPNs. Work is also beginning on a prototype tool for 
automating the process presented. On a more theoretical note, our research would benefit 
from more work on the efficient analysis of high-level timed Petri nets and especially their 
modular/compositional analysis. finally, the authors believe the translation is not tied to 
the SA/RT described in the paper and work is proceeding to substantiate this hypothesis. 



www.manaraa.com

Concurrent semantics for structured design methods 169 

6 REFERENCES 

W. Rruyn, R. Jensen, D. Keskar, and P. Ward. (1988) ESML : An extended systems 
modeling language based on the data flow diagram. ACM SIGSOFT, Software Engineering 
Notes, 13(1):58-67, Jan. 1988. 
C. Ghezzi, D. Mandrioli, S. Marasca, and M. Pezze. (1991) A unified high-level Petri net 
formalism for time-critical systems. IEEE SE, 17(2}:160-172, Feb. 1991. 
C I Birkinshaw P R Croll D G Marriott and P A Nixon, (1994) Engineering safety-critical 
parallel systems , In Information and Software Technology, Vol. 36, No. 7, pp. 449-456, 
1994. . 
R. Elmstr!llm, R. Lintulampi, and M. Pezze. (1994) Automatic translation of SA/RT to 
high-level timed Petri nets. Technical Report IPTES-PDM-17-V2.3, Odense, Jan 1994. 
T. DeMarco. (1978) Structured Analysis and System Specification . New Jersey, Prence
Hall. 
D. J. Hatley and I. A. Pirbhai. (1987) Strategies for Real Time Specifications. New York, 
Dorset House. 
P. Ward and S. Mellor. (1985) Structured Development for Real-Time Systems, volume 
1-3. New Jersey: Prence Hall. 
Paul T. Ward. (1986) The transformation schema: an extension of the data flow diagram 
to represent control and timing. IEEE SE, 12(2):198-210, Feb 1986. 
L. Shi and P. Nixon. (1995a) An improved translation from SA/RT model to high-level 
timed Petri nets. In the proceedings of FME'96, to appear in LNCS, Springer Verlag. 
L. Shi and P. Nixon. (1995) Uniting formal and structured design methods for real-time sys
tems. Technical report, Dept. of Computing, Manchester Metropolitan University, 1995. 

7 BIOGRAPHY 

Patrick Nixon recieved his B.Sc in Computer Science from Liverpool University in 1990 
and his Ph.D in Computer Science from Sheffield University in 1994. He was a lecturer 
in Computing at Manchester Metropolitan University until1995, when he took up a post 
of lecturer at Trinity College Dublin. His research interests include software engineer
ing, parallel and distributed computing, distributed object systems, and applied formal 
methods. 

Lihua Shi is currently a Ph.D student in Computing at Manchester Metropolitan Uni
versity. Prior to this she recieved her B.Sc in Computer Science and a Masters in Software 
Engineering from East China Normal University, and was a lecturer there until1994. 

ACKNOWLEDGEMENTS 

This research is supported by a research scholarship from Manchester Metropolitan Uni
versity for Lihua Shi. 



www.manaraa.com

15 
Towards a theory of shared data 
in distributed systems 

S. Dobson and C.P. Wadsworth 
Rutherford Appleton Laboratory 
Chilton, Didcot, Oxfordshire OX11 OQX, UK 
Tel +441235 445867 Fax +441235 445945 
E-mail [S.Dobson, C.P. Wadsworth}@ rl.ac.uk 

Abstract 
We have developed a theory of sharing which captures the behaviour of programs with respect to 
shared data into the framework of process algebra. The core theory can describe programs 
performing read and write access to unitary pieces of shared data. Extensions allow shared data to 
be decomposed and atomic copies to be made, reflecting the common operations of parallel 
programs. We describe the theory and give an example of its use in analysing and transforming a 
sample mathematical application. 

Keywords 
Sharing, process algebra, program analysis, program transformation 

1 INTRODUCTION 

Multiprocessor systems traditionally fall into two camps: shared memory, in which all processes 
have direct access to all the data in a computation; and distributed memory, in which access to 
much of the data involves explicit communication. Recently the distinction has become a little 
blurred through the use of virtual shared memory (Frank, 1992)(Li, 1989) and through the desire to 
make use of high-level data abstractions when building distributed applications. 

In a typical distributed application there will be a body of data which is shared between some or 
all components. Examples include a mesh in a simulation, a set of tables in a distributed database, 
or a collection of pages in a distributed multimedia application. The efficient implementation of the 
application may require exploration of several different strategies before the "best" is chosen. 

The danger is that decomposition blurs the programmer's conceptual model of the data being 
manipulated, and introduces subtle machine dependencies. These can make large applications hard 
to analyse and maintain, and damage their portability. 

As part of the TaiiShiP collaborative project between RAL and the University of Leeds we have 
been investigating the use of high-level typed data abstractions for creating distributed applications. 
Our contention is that this approach raises the level of distributed programming so as to allow a 



www.manaraa.com

Towards a theory of shared data in distributed systems 171 

more structured, more portable and more easily-analysed - in short, better engineered - applications 
to be created. At the same time, it allows us to exploit type-specific information for optimised 
processing and distribution of the components of an application. 

In order to explore the ways in which applications share data, we are developing a theory of 
sharing. The intention of this theory is to capture the sharing behaviour of applications, allowing 
different patterns of sharing to be identified, characterised and compared. We hope that this will 
lead to new insights into the design of efficient, portable shared data types, and to new methods for 
the optimised compilation and support of distributed applications. 

Section two introduces the core theory of sharing. Section three describes two extensions 
covering wider class of systems. Section four presents some preliminary applications of the theory 
to program analysis. Section five relates the theory to similar work, and section six offers our 
conclusions and some directions for future work. 

2 CORE THEORY OF SHARING 

Sharing Areas and Events 

Many kinds of data may be shared in an application, from simple variables to large structured types 
or multimedia objects. For our purposes, however, all shared data is represented by the single 
abstraction of a sharing area. A sharing area is a collection of zero or more named data items. A 
single variable is represented by a sharing area having one element; a large array by an area with 
many elements each identified by an index tuple. For the time being we consider sharing areas to be 
without internal structure; they are also untyped in that the theory does not describe the contents of 
elements or how they are named. All sharing areas are disjoint from all other sharing areas, in that 
no two areas share elements in common. 

Having defined an abstraction for shared data we need ways in which to access it. Suppose that 
we have a set S of sharing areas, denoted a, b, . . . . A procedure may atomically read zero or 
more elements from a single sharing area: this action is denoted by rd ( a) where a is the sharing 
area accessed. Similarly the action wr (a) denotes the atomic update of elements in sharing area a. 

We term these two basic actions theevents of sharing theory. 

Sharing Expressions 

A sharing expression describes a program's interactions with sharing areas, built by composing the 
basic actions which may be applied to areas. Each sharing expression is a term in a modified 
process algebra (based on the system PA of Baeten and Weijland (1990)) using events instead of 
communication as the basic elements. 

Events may be built into larger expressions using sequential composition, alternative 
composition and parallel composition, denoted by the functions ; , + and II respectively*. So the 
term rd (a); (wr (a)+ (wr (a) llwr (b))) describes the sharing behaviour of a function which 
first reads elements from sharing area a and then either updates elements in a or updates elements 
in a and b in parallel. In P A, as in most process algebras, parallel composition is viewed as non
deterministic interleaving. 

• PAuses . (dot) rather than ; (semi-colon) to denote sequential composition. 



www.manaraa.com

172 Part One Research Papers 

We may define a set of equations on the terms created from the events and combining operators. 
If x, y, z represent arbitrary terms, then: 

x+y = y+x 
(x+y);z = x;z+y;z 

(x+y)+z 
(x;y);z 

x+(y+z) 
x;(y;z) 

X+X 
xiY 

X 
YIX 

New sharing areas are introduced using the u operator: the expression ua. x (where x is an 
arbitrary term) introduces a new sharing area a for use in x (called the scope of a). For simplicity 
we assume that no sharing area name is ever re-used. 

A sharing area a is said to occur in a term x if x contains an event rd (a) or wr (a) . Events in 
a occurring inside the scope of a ua operator appear bound; any other occurrences appear free. We 
define using structural induction a function FA which computes the set of sharing areas appearing 
free in a term: 

FA(rd(a)) =a 
FA(wr(a)) =a 

FA(x;y) = FA(x)UFA(y) 
FA(xly) FA(x)UFA(y) 

FA(x+y) = FA(x)UFA(y) 
FA(Ua.x) = FA(x)\{a} 

We then use FA to define side conditions for equations relating to the u operator, controlling the 
scope of sharing areas in terms: 

ua. (x;y) = x;ua.y 
ua. (Ub.x) = ub. (ua.x) 

ati!FA(x) ua. (x;y) 
ua.x = x 

(ua.x)+(Ub.y) = ua.ub.(x+y) 
ati!FA(y) Abti!FA(x) 

(ua.x) ;y ati!FA(y) 
ati!FA(x) 

The fJrSt two equations state that terms which do not actually use a sharing area may be moved 
into or out of its scope. The fourth axiom states that unused sharing areas may be deleted, or 
conversely that new areas may be introduced freely. The final axiom allows sharing areas to be 
factored into or out of alternative compositions. 

Renaming Operators 

PA defines a small set of renaming operators, allowing actions to be changed into other actions. We 
may usefully import this idea into sharing theory. 

A renaming function is a function which maps actions to actions. The renaming function r ( f ) 
maps every action f to some other action g (which may be the same as f). A renaming function Pr 

applies r to a term, and is defined by a straight-forward structural induction. So in the term 
x=Ua.ub.(rd(a);wr(b)) if we define r=id{wr(b)Hwr(a)} then 
Pr(X) = ua.ub. (rd(a) ;wr(a)) changeseverywr(b) actionintoawr(a) action. 

Note that Pr changes actions, not sharing areas. We may however use it to define another 
operator which renames sharing areas in a term. Let x be a term. Let s be a sub-set of the sharing 
areas occurring in x, and let s ' be a set of new sharing areas not occurring in x. Let s be a sharing 
area renaming function mapping elements of S to elements of S ' . Now create a renaming function 
suchthatforallaeSandb=s(a) wehaver(rd(a)} = rd(b),r(wr(a)) = wr(b) and 
r is the identity on all other actions. We now define a sharing area renaming operator a. which 
renames sharing areas and their events. We first introduce each new sharing area in s' using the u 



www.manaraa.com

Towards a theory of shared data in distributed systems 173 

operator, then rename according to the renaming function induced by s. Using our example term x 
from above, if we sets = id{bt-+c} then 

a.(x) a_(ua.ub. (rd(a);wr(blll 
uc.ua.ub. !Pr(rd(a) ;wr (b))) 
uc.ua.ub. (rd(a);wr(c)) 

= uc.ua. (rd(a);wr(c)) 

forcEFA(x) 

eliminating unused area b 

The usefulness of this operator will become apparent in the example (section 5). 

Effect Analysis 

We define a function AE to extract the free sharing areas in which the term causes events. The 
function generates two sets, containing the areas in which read events occur and the areas in which 
write events occur: 

AE(rd(a)) = ({a},0) 
AE(x+y) AE(x)+AE(y) 
AE!xlyl = AE(x)+AE(y) 

AE(wr(a)) = (0,{a}) 
AE(x;y) = AE(x)+AE(y) 
AE(ua.x) = AE(x)-({a}, {a}) 

(where+ and - respectively denote pointwise set union and set difference on pairs). We use two 
functions AErd and AEwr to project the first and second sets, so AErd ( x) is the set of sharing areas 
in which x causes read events. 

3 EXTENSIONS 

The core theory can express sharing in an important class of algorithms, but lacks some of the 
features commonly encountered in parallel and distributed applications. We shall now extend it in 
two directions, to encompass the decomposition and copying of data structures. These extensions 
are completely modular, in that they may be added individually or together to the core theory to 
generate a more expressive system. 

Sub-Areas 

Expressing algorithms as manipulations on large shared types can make applications more 
analysable. However, direct implementation of a large value as a single object may lead to 
contention and centralisation which would damage performance. Programmers must often 
decompose a data structure (such as a grid) into sub-parts which are then distributed and processed 
in parallel. There will in general be many different decomposition strategies for a value, each 
semantically equivalent but with different performance profiles. We would like to capture the 
decomposition of a value without losing the fact that the sub-parts combine to form a single, larger 
whole. 

Disjointness, Containment and Decomposition 
Two sharing areas a and bare disjoint (denoted aE&b) do not share elements in common. In the 
core theory, all sharing areas are mutually disjoint. We may relax this restriction and allow two 



www.manaraa.com

174 Part One Research Papers 

areas share some elements. Of particular interest is the case where all the elements of a sharing area 
b are also elements of an area a, so that b identifies a sub-part of a. We denote this by bca, and 
say that a contains b (or that b is a sub-area of a). 

c 

Figure 1 Sub-areas form a tree under the containment relation. 

Introducing sub-areas into the theory of sharing requires another operator. If a is a sharing area, 
the term £\,. { a 1 , a 2 , ... , an} . x introduces the set of disjoint sub-areas a1 , a2 , ... , an of a into 
x. Each a; is a sub-area of a, so a; ca. There may be elements of a not contained in any a;. Both 
the u and .:1 operators introduce sharing areas. However, u generates new (shared) state whereas .:1 
simply partitions existing state. So the term 

ua.ub. (x; (4,.{c,d} .4be. (y; (4,.f. z}))) 

describes a set of sharing areas which form a forest of trees (figure 1, where the arrows denote 
containment of one area within another and the dotted lines denote areas which are explicitly known 
to be disjoint). We may also assert that if aEBb, cca and ecb then cEBe (and similarly for d); but 
it is not necessarily the case thatcEBf. Extending the definition ofto'A to encompass this new term 

FA(48 D.x) = FA(x)\D 

for some set of sub-areas D, we may define some additional equations for the extended theory of 
sharing with sub-areas: 

£\.D. (x;y) = (4aD.x) ;y 
4aD. (x;y) = x; !4aD.y) 
4,.0. (.:1bE.x) = 4bE. (4aD.x) 
4,.0.x = x 
£\,(DUd) .x = £\,.D.x 
(4,.D.x) + (.:1bE.y) = 4aD.4bE. (x+y) 

DrtFA(y)=0 
DnFA(x)=0 

dt!FA(x) 
DnFA(y) =0AE11FA(x) =0 

Note that there is no equation of the form £\,.0. 4,.E. x = 4,. (DUE) . x as disjointness of sub
areas is not implied across separate4 terms. 

Generalisation 
It often impedes the understanding of an application if the partitioning of data structures is made too 
explicit, and this is also true of sharing theory: the use of sub-areas can make analysis unnecessarily 
difficult. The generalisation transform allows us to abstract away from different sub-area 
decompositions where necessary. 



www.manaraa.com

Towards a theory of shared data in distributed systems 175 

If a, a 1 and a 2 are sharing areas such that a1, a 2ca, we say that a is a generalised sharing 
area of a 1 and a 2 • (a may itself be a sub-area of another, larger area.) Let S be a set of mutually 
disjoint sharing areas, and let r be a renaming function. The generalisation transform r r 5 is defined 
by another structural induction, the only interesting case of which is 

s { A.D.r,S(x) if-.3ceS.acc 
r (A D.x)= . 

' " r/(x) wherer'=r{rd(a;)Hrd(c),wr(a;}Hwr(c)la; eD}If3ceS.acc 

In a Aa term, if there is an area in S which is a generalisation of a (there can be at most one such 
area) then the events in the scope of the term are re-written so as to be events in the generalised 
area. 

The generalisation transform can generalise a selection of sharing areas to abstract away from 
any decomposition, or can eliminate decomposition entirely. Many terms may have the same 
generalisation, so generalisation may be seen as a form of refinement: two terms y and y' such that 
r;ds (y) = r;ds (y') for some S can be considered to be "the same" modulo different 
decompositions. 

Copy Events 

Suppose we have a sharing area representing some commonly-read state in an application. A useful 
optimisation might be to pre-copy the data to sites which use it, forming a local cached copy at each 
site. This would reduce the number of accesses to a single point in the system. 

To capture this notion within sharing theory, we introduce a new set of actions. For every pair 
a , b of sharing areas we define an event cp (a, b) denoting the atomic "snapshot" of all the 
elements of a into b. Immediately after a copy event b is identical to a. The effect of performing 
some action which uses a is the same as performing the same action using an identical copy oi: 

ua.x = ua.ub. (cp(a,b) ;O.[a.-.J>J (x)) bEFA(x) 

In the presence of sub-areas we refine the definition slightly to prevent pathological cases such as 
copying the contents of an area into one of its sub-areas. We do this by restricting the existence of 
cp (a, b) events to those cases where aE&b. Having done this, we may define the behaviour of 
copy actions on sub-areas as 

Aa(DUd) .X = Aa(DUd) .UC. (cp(d,c) ;a.[do-+cJ (X)) cEFA(x) 

where d is some sub-area of a. 

4 APPLICATIONS 

The theory we have presented above allows us to capture the sharing behaviour of a wide class of 
programs. The programs may then be analysed for side effects, possible conflicts or non
determinism, and potentialoptimisations. 



www.manaraa.com

176 Part One Research Papers 

Program Analysis 

A function or procedure within a program gives rise to a sharing expression which captures its 
dependence and influence on shared state. One may define a mapping from a language to sharing 
theory, and then manipulate the sharing expression to draw conclusions about the code. Our aim is 
to also reverse this mapping, to use sharing theory as the basis of a transformation system - to date 
we have concentrated on the analysis phase. 

Conflicts and Synchronisation 
Suppose we have a program in which an object is being updated in parallel by two functions. We 
represent the object by a sharing area a, and the two functions x and y as having behaviour given 
by rd (a) ; wr (a) ; ..• ; wr (a) . The overall behaviour of this system is given by the expression 
z = ua . (xI y) . If we compute AE for x and y, we discover that ae AEwr for both. This 
indicates that the parallel term has a potential conflict as different interleavings may introduce write 
events in different orders, making the program non-deterministic. 

We say that two terms interact if the events caused by one may affect the behaviour of the other 
in terms of the results of read events. Two terms interfere if they interact or if they cause write 
events in a common area. Non-interacting terms cannot direcdy affect each others' behaviour as 
they do not update any state accessed by the other. Interference is a stronger condition which also 
encompasses terms which, while not necessarily affecting each other's actions, may still generate 
non-deterministic final effects if composed in parallel. Both interaction and interference are 
properties which may simply be determined by examination of the terms involved. 

In some cases interference is observed "spuriously" because sharing theory works at the level of 
sharing areas, not elements within those areas. For example if the sharing area represents a large 
grid and the interfering functions are updating different parts of it, then there is no problem. If this 
property is captured by means of sub-areas, the interference is removed. Structured algorithm or 
type design can help make this information available. 

For other cases, interference constrains an application to ensure that the atomicity of events is 
maintained, using locking etcetera. The converse is also true: in the absence of interference, no 
concurrency control is needed. This means that the theory can detect cases in which concurrency 
control may be "switched off' to avoid overheads. 

Caching and Copying 
Many algorithms make many more read accesses to shared data than write accesses, and it may be 
advantageous to create cached copies of the shared state local to each process rather than have all 
processes share a single copy. Sharing theory may be used to detect situations in which caching may 
be applied. The basic technique is to observe parts of a term in which a sharing area incurs only 
read events in parallel, and then create new copies of the area local to each parallel process. 

For example, let x and y describe functions which repeatedly read elements from a sharing area 
a in order to update an area b, so that no write events are caused in a. We may transform this 
expression to introduce private copies ofa: 

X = ua.ub. <xiY> 
ua.ub. ((uc.x>l<ud.y)) 

= ua.ub. ( (uc. (cp(a,c) ;a1.,...c1 (x))) I (ud. (cp(a,d) ;a1.....,1 (y)))) 



www.manaraa.com

Towards a theory of shared data in distributed systems 177 

In a distributed system such caching may be highly advantageous. Rather than access a single 
copy of some shared data. possibly involving network access, it is possible to generate a term which 
uses local copies of the data and is provably equivalent to the shared-data case. The technique is 
particularly effective in the presence of sub-areas, where we may generate local copies of only those 
parts of a piece of shared state which are actually needed in each partial computation. 

However, not all such opportunities for caching and replication will be equally advantageous. 
There is a hidden assumption - not always made explicit in work on transformation - that accessing 
local copies is far less expensive than accessing a shared copy and justifies the copying overhead. In 
systems which make highly infrequent access to shared state it may not be worth performing this 
optimisation. Deciding between these two situations is an interesting problem. 

Example: Parallel Solution of the 2-D Wave Equation 

To demonstrate these techniques we shall analyse a program calculating the numerical solution of a 
partial differential equation. The application models the motion of a wave in a fluid medium - for 
example a pressure wave in a gas. In two dimensions this equation has the discrete form 

Cfi,jJ = B(i,jJ- A[i,jJ+:i(B[i + l,j)+ B[i -l,j) + B[i,j +I)+ B(i,j -11) 

where three grids A. B and C are used to hold values of the simulation at different time steps. Grid 
B holds the values of points at timet; grid A at time t-1; and grid C holds the new values for time 
t+l. The new value of a point (i, j) is computed as a function of its past value and those of its 
immediate four neighbours. Let us assign sharing areas a, b and c to represent the grids A, B and 
C respectively. These sharing areas contain many elements, one for each point in the grids. 

Simple Sharing Analysis 
To compute the new value of a point we apply a function NewVal ue which accesses areas a and b 
in order to compute a value with which to update area::. This gives rise to the sharing expression: 

newvalue = (rd(bllrd(allrd(bllrd(blftrd(bllrd(b));wr(c) 

Calculation of a single time-step involves applying NewVal ue to each point in the space in 
parallel: 

calc= newvaluelnewvaluel···lnewvalue 

where each instance has the same sharing behaviour, but updates a different point ia:. 
Every instance of newval ue in calc interferes with every other instance, as each is updating 

c. However, as we know from the structure of the calculation that each instance updates a different 
point. this interference is spurious. We may make the structure explicit by decomposing c into sub
areas c1, c2 , ·-, c .. such that each sub-area contains a single point. If we then apply each instance 
ofnewvalue to a different sub-area: 

calc' = Ac,{c1,c2, ... ,c .. }. 
a,_cll (newvalue) lac-c2) (newvalue) •••. lacco-.cn) (newvalue) 



www.manaraa.com

178 Part One Research Papers 

the spurious interference has disappeared - at the price of an extremely complex sub-area structure. 
However, note that calc = rr s (calc' ) : calc' is simply a refinement of calc using a 
particular decomposition strategy, and we can easily generalise it to retrieve the simpler form. 

Another possible strategy is to divide the decomposed parts of c into (say) four sets for 
distribution onto four processors: 

calcd = ~{p,q,r,s}. 
(Ap{pl,P2• · · · •Pn} • 

(O:(c,...p•l (newvalue) ~O:(c,...p>l (newvalue) II- .. ) ) 
I ~~<ql, q2, ••• , q,.J. 

(O:(c,...q•l (newvalue) la{c,...q>l (newvalue) II- .. )) 
II- .. 

In this case we see that the "processor" terms are non-interfering, and the instances of newvalue 
within each term are also non-interfering. Furthermore we may generalise the decomposition of the 
processor terms to obtain a term describing the events at each processor, and then further generalise 
to obtain calc. 

Copying and Storage Re-use 
Inspecting the discrete form of the wave equation, we see that the grids A, B and C are used 
cyclically: the values at tim~:t become those at timet-! on the next cycle of computation. Abstractly 
• the system calculates the values ofC using those of A and B; 
• it then creates three new gridsA ', B' and C'; 
• it copies the values ofB into A • and C into B'; and 
• it then performs the next cycle of calculation using the new grids. 

This behaviour is captured by the expression 

Ua' .Ub' .Uc'. ( (cp(b,a') ftcp(c,b')) ... ) 

and we may use this simple description of the system's behaviour and derive a new expression 
which performs "pointer swapping" and re-uses the existing storage without copying. 

Let us consider the full definition of two cycles of computation, using the basic definition of 
calc for simplicity. The calculation has the behaviour: 

wave = ua.ub.uc. (setup;twostep) 
setup = wr(a) llwr(b) 
twostep = calc;calc2 
calc2 = Ua' .Ub' .Uc'. (cp(b,a') ;cp(c,b') ;a!..,....a'.l>Hb',c,_.c·l (calc)) 

(where setup initialises the grids A and B with the initial state of the system). So the computation 
initialises the grids, calculates the first iteration, creates new grids and initialises them by copying, 
and then repeats the calculation. Theoptimised version replacestwostep with: 

twostep' = calc;a!..,....b.b>-+c.c,...al (calc) 



www.manaraa.com

Towards a theory of shared data in distributed systems 179 

where the grids from the first step are re-assigned in the second. 
Optimising wave involves converting twos tep into twos tep' . The only observation which we 
need to make involves the use of a copy event as the final action on a sharing area. If a copy is made 
of an area, and the original is never accessed again, then one may equally make use of the original 
area instead of the copy. This is expressed by the equation: 

ua. (x;ub. (cp(a,b) .y)) = ua. (x;a0,-.1 (y)) 

Using this equation, we may transformtwostep as follows: 

twostep calc;calc2 
calc;Ua' .Ub' .uc'. (cp(b,a') ;cp(c,b'); 

ac ..... a".bo-ob",c...,c') (calc)) 
= calc;ua' .uc'. (cp(b,a') ;Ub'. (cp(c,b'); 

aeFA(y) 

ac ..... a·.b...,b·,c ... c') (calc))) 
calc;Ua' .uc'. (cp(b,a') ;acb· ... cJ (ac-·.bo-ob',c...,c'J (calc))) 
calc;uc' .ua'. (cp(b,a') ;acb·...,cJ (ac.,...a·.bo-ob',c,..c'J (calc))) 

calc;Uc'. (a,.,...b,bo-oc.c...,c'l (calc)) 

which eliminates the intermediate grids A' and B', but still generates a new grid C' for each cycle. 
We may re-use the grid A instead of creating C', but the system has no way of determining this: if 
we indicate it, by using an additional copy action, then 

twostep calc; uc' . ( cp (a, c') ; a,.,...b,bo-oc,c._.c' 1 (calc) ) 

calc;acc•...,aJ (aca...b.bo-oc,c...,c•J (calc)) 
calc;ac.,...b.bo-oc.c...,al (calc) 

and we have achieved our aim. 

Halos and Caching 
The method described above is a generic technique, applicable to any system based around iterative 
time-series methods. The most common implementation of such divides the grids into disjoint 
regions which are mapped onto different processors for calculation in parallel, often with "halos" of 
data dependencies between regions. 

Let us define a disbibuted memory two-step solver on four processors using a quadrant 
partitioning. Computing a point in a particular region of c may involve access to points in the 
corresponding and neighbouring regions of A and B. The disbibuted update function for a particular 
region, newval uer n• is thus defined by 

newvaluern = (rd(bnllrd(anlftrdhalon);wr(cnl 
rdhalon = (rd(bn)+rd(bn-leftl) I (rd(bn)+rd(bn-rightl) U 

(rd(bn)+rd(bn-up)) U (rd(bnl+rd(bn-downl) 

calc;uc' .ua'. (cp(b,a') ;acb·...,cJ (ac.,...a·.bo-ob',c,..c'J 



www.manaraa.com

180 Part One Research Papers 

where bn-left is the left-neighbouring region of bn and so forth, depending on the indexing 
scheme chosen. For a single cycle within a region, we apply newvaluern to all the points within 
the region: 

calcrn = newvaluernllnewvaluernl· .• 

For the four-processor decomposition, we would perform a single cycle of the computation by 
applying calcr n to all four sets of sub-areas. The full two-cycle computation is given by: 

waver = ua.ub.uc. (setup;twostepr) 
twostepr = stepl;step2 
stepl ~(a1,a2,a3,a,} .<1b(b1,b2,b3,b,} . .1,(c1,c2,C3,c,} .calcr 
step2 

calcr 

ua• .ub' .uc•. (cp(b,a') ;cp(c,b'); 
~· (a1, a2, a3, a,} . .1b' (b1, b2, b3, b,} • .1,. (c1, c2, C3, c,}. calcr) 

calcrllcalcr21calcr31calcr, 

We have not yet identified the halos explicitly. This is a useful thing to do, as it defines exactly 
which parts of a sub-grid are needed in computations on other sub-grids, which in tum allows 
optimisation of the sharing. The grid represented by b has been divided into four sub-grids b1-b,. 
Each of these sub-grids is further divided into three parts: vertical halo, horizontal halo, and non
halo elements. Note that these divisions are not disjoint, as the two halo areas share an element in 
the corner. We identify the two halo regions within an area b, by bnv and bru. for the vertical and 
horizontal halo areas respectively. Using this decompositio11;1ewvaluer n may be re-written as 

newvaluern' = (rd(bnllrd(anl0rdhalon'l;wr(cnl 
rdhalon' = (rd (b,) +rd (bnh-left)) I (rd (b,) +rd lbru.-right) ) II 

< rd <bn> +rd<bnv-upl > I <rd <bnl +rd lbnv-downl > 

where hnh-lett denotes the horizontal halo of b,'s left neighbour and so forth. These expressions 
give rise to an expression calcr • for the full calculation. The expression stepl may be re
written to use halos: 

stepl' = ~(a~. a2, a3, a,} • .1b(bl, b2, b3, b,} . .1,(cl, Cz, c3, c,} . 
.1b,blh . .1b,blv ..... calcr' 

We may show that stepl' only ever accesses sub-areas of each b,, not the full areas. 
Furthermore, no process ever causes write events within any b, in the scope of stepl'. We may 
therefore introduce copy actions to move the halo regions used by each sub-calculation into a local 
area. To make the derivation simpler to read, we shall abstract from stepl' the terms which relate 
to the calculation of areac~. and transform them: 

stepl' ..• ~.blh·.1b,blv· (newvalue1U ... ) 
..• .1b,blh·~•blv• (Uh. (cp(b2h•h) ;alb•"""'! (newvalue1l l l 
.•. .1b,blh·.1b,blv· (Uh. (cp(bzh,hl ;Uv. (cp(b3v•V); 

alb'"""'· b>.,..vl (newvalued ••• )))) 
... .1b,blh . .1b,blv• (Uh. ( cp (b2h• h) ;UV. ( Cp (b3v• V) ; 

au""""'· b•,...vl (newvalue1l))) I· .. ) 



www.manaraa.com

Towards a theory of shared data in distributed systems 181 

The newval uen terms make use of the correct halos, copied into new areas used only by them. 
This means that the calculation of stepl' may be re-written so that each region calculation frrst 
copies its halo into a local sharing area before using it, and does not access any other regions in the 
course of its computation. This models pre-fetch copying of data into local memory. Once more, the 
transformations are only effective because of a precise knowledge of the update behaviour of the 
underlying functionNewValue. 

5 RELATED WORK 

Research on process algebra has traditionally focused on calculi using communication between 
processes - indeed, our system is the only process algebra of which we are aware which addresses 
shared data. We see sharing theory as a possible complement to the usual algebras in the 
specification of shared memory computations. 

Parallelising compilers make use of,many of the optimisations we have identified. We believe 
that our theory allows many of the techniques of parallelisation, data dependence analysis (Zima, 
1991) and interference analysis (Lucassen, 1988) to be cast in a new and more tractable framework. 
Furthermore, the theory gives insights into the design of types and operations which may eliminate 
much complex analysis by making the sharing behaviour of functions available directly to the 
compiler. In many ways this is closely related to algorithmic skeletons and bulk data types (Bird, 
1986)(Skillicorn, 1991 )(Skillicorn, 1995) with the important addition of being applicable to mutable 
data types. 

Another related issue is that of weak memory coherence (Frank, 1992)(Li, 1989) caching, and 
bulk synchrony (McColl, 1994). We may use copy events to model the action of systems where 
"shared" state is not updated synchronously across a system, although the correspondence is far 
from exact and needs further investigation. 

6 CONCLUSIONS AND FUTURE WORK 

We have described the development of a theory of sharing in distributed systems, using a modified 
process algebra which allows shared pieces of state to be defined and manipulated. The core theory 
can describe programs performing read and write access to unitary pieces of shared data. 
Extensions allow shared data to be decomposed and atomic copies to be made. The theory can 
easily detect common synchronisation problems, and can be used to transform systems which use 
local caches of read-only data. 

Our approach is to define high-level shared abstract data types whose definitions capture the 
most common programming idioms, including their sharing behaviour. We see sharing theory as 
applicable in three ways: 

• in specifying the sharing behaviour of operations of types; 

• in analysing new operations for unwanted interactions or potential bottlenecks, to 
ensure the type is scalable; and 

• in defining new operations. 

The first application uses the theory as a concise description of a function's interactions and side 
effects, and is close to the traditional uses of process algebra in specification. The second helps 
ensure that any types included in a distributed applications library are indeed scalable. The third -



www.manaraa.com

182 Part One Research Papers 

rather more speculative - allows the programmer to define new operations and associate sharing 
expressions with them (or derive them automatically), making new functions "first class citizens". 

Our immediate plans for the future include investigating performance models to guide analysis, 
for example to differentiate between possible and advantageous opportunities for caching. This will 
lead to methods to aid the design of types suitable for portable distributed programming, and the 
development of automated tool support for the analysis and manipulation of sharing expressions. 

7 REFERENCES 

Baeten, J.C.M. and Weijland, W.P. (1990) Process algebra. Cambridge University Press. 
Bird, R. (1986) An introduction to the theory of lists, in Logics for Programming and Calculi of 

Discrete Design. 
Frank, S. (1992) Virtual memory to ALLCACHE memory, in Proceedings of the Virtual Shared 

Memory Symposium, Centre for Novel Computing, University of Manchester 
Li, K. and Hudak, P. (1989) Memory coherence in shared virtual memory systems. ACM 

Transactions on Computer Systems, 7, 243-271. 
Lucassen, J.M. and Gifford, D.K. (1988) Polymorphic effect systems, in Proceedings of the 15th 

ACM Symposium on Principles of Programming Languages. 
McColl, W.F. (1994) BSP programming, in DIMACS series in Discrete Mathematics and 

Theoretical Computer Science. 
Milner, R. (1986) A calculus of communicating systems. Technical report ECS-LFCS-86-7, 

Laboratory for Foundations of Computer Science, University of Edinburgh. 
Skillicorn, D.B. (1991) Models for practical parallel computation. international Journal of Parallel 

Programming, 20, 133-158. 
Skillicorn, D.B. (1995) Categorical data types, in Abstract Machine Models for Highly Parallel 

Computing (ed. J.R. Davy and P.M. Dew), Oxford Science Publishers. 
Zima, H. and Chapman, B. (1991) Supercompilers for parallel and vector computers. ACM Press. 

8 BIOGRAPHIES 

Simon Dobson received a DPhil in Computer Science from the University of York in 1993, with 
a thesis on programming models for highly scalable computers. He joined the Rutherford Appleton 
Laboratory as a research fellow in 1992 to pursue his interests in languages and architectures for 
parallel and distributed systems, and has worked on a variety of projects involving advanced 
compilation techniques, system architectures, formal methods and hypermedia. 

Chris Wadsworth started his research career in the Programming Research Group at Oxford 
University and worked at Syracuse and Edinburgh before moving to the Rutherford Appleton 
Laboratory in 1981 where he heads the Parallel and Distributed Systems Group. He is well known 
for his seminal contributions to lambda calculus, lazy evaluation and denotational semantics, and 
was a joint developer of the LCF theorerq>rover and the ML language. 



www.manaraa.com

16 
Using Concurrency and Formal Methods for 
the Design of Safe Process Control 

Thierry CATTEL 
Laboratoire de Telinformatique, Ecole Polytechnique Federale 
CH-1015 Lausanne, Switzerland 
Tel. +41 21 693 67 76, Fax +41 21 693 66 00, E-mail cattel@di.epfl.ch 

Abstract 
This paper reports an experience with the modeling, verification and concurrent implementation 
of a medium-sized process control problem. The case study was proposed by 
Forschungszentrum Informatik, Karlsruhe in 1993 in order to promote the usage of formal 
methods in industry. It concerns an industrial robotics application that processes metal plates. 
A top-down design approach is followed where successive CCS and Promela specification 
levels of decreasing abstraction are considered, each layer little by little allows verification of 
parts of the security requirements thus providing a mean for coping with state explosion. The 
level refinements are checked with the Concurrency Workbench a CCS-based tool. Safety and 
liveness requirements are expressed in linear temporal logic and checked with SPIN. From the 
ultimate specification, two different implementations are derived. The first one is in 
Synchronous C++, a concurrent extension of C++ and the second in Regis/Darwin. This 
application shows that formal methods are quite appropriate for developing control process 
problem from scratch and with requirements to be checked in mind. It appeared clearly that the 
specification phase was very important for obtaining a satisfactory specification from which a 
well behaved implementation was derived easily in a few days. 

Keywords 
application, process control, refinement approach, linear temporal logic, process equivalence, 
concurrent programming. 

1 INTRODUCTION 

Though SPIN (Holzmann, 1991) was specially designed for tackling protocols, it appeared that 
it was also quite suitable for addressing other problems such as distributed algorithms and 
multiprocessor operating systems (Cattel, 1994). Provided one is able to express problems as 
protocols it is quite possible to take advantage of SPIN's power for modeling and verifying them 
also. We show in this paper that process control systems may be seen as particular protocols and 
be verified as such. Some dedicated languages and tools such as LUSTRE (Halbwachs, 1993) 
are certainly more powerful and efficient for expressing and verifying such systems, but it is not 
clear that the resulting specifications are more readable than the ones obtained with Promela. 
Furthermore there is no possibility, in particular with LUSTRE, to check liveness properties, 
whereas SPIN is well adapted for this purpose. When we started to design a controller for the 
Production Cell case study proposed in 1993 by Forschungszentrum lnformatik, Karlsruhe, 



www.manaraa.com

184 Part One Research Papers 

Germany (Lindner, 1993) there already existed around 20 contributions (Lewerentz, 1994). 
Few of them proposed a complete solution to the problem in term of specification, verification 
and implementation, and no one really solved the Iiveness requirements checking. My main 
motivation was to contribute by firstly addressing the Iiveness concerns. Another goal was to 
derive a straightforward implementation of the detailed Promela specifications by translation 
into Synchronous C++ (Call, 1994), a concurrent extension of C++ developed in our Labs, that 
should be soon integrated in Gnu distribution. We have also derived an implementation of the 
production cell in Regis/Darwin the distributed framework of Imperial College (Magee, 1995), 
from the Pro meta specifications; one of the advantages is that we obtained a clearer architecture 
that may be graphically built with a visual tool such as the Software Architect Assistant (Keng, 
1995). 
For being tractable the produced models need to be designed according to several levels of 
decreasing abstraction, thus a refinement approach was used. Unfortunately SPIN currently 
provides no way of verifying the consistency of such refinements since no support for checking 
process equivalencies is available. Some attempts exist (Erdogmus, 1995) for extending SPIN 
in that direction but only allows for restricted equivalencies (trace equivalence, trace inclusion). 
For this reason we also developed in parallel some CCS (Milner, 1989) models that correspond 
to the Promela specification. 
In the following sections, we will first briefly present the production cell case study, the design 
approach used and some of the resulting models, the verification of the Iiveness requirements, 
the verification of some safety requirements and eventually some considerations related to the 
implementation. A brief introduction to Promela/SPIN is also provided. 

2 THE PRODUCTION CELL CASE STUDY 

This case study is inspired of an actual industrial installation in a metal-processing plant in 
Karlsruhe. It is a realistic industry-oriented problem in which safety requirements are important. 
The production cell (see Fig. l) processes metal blanks with a press. First the blanks are 
introduced on a feedbelt that leads them towards a rotary table that presents the blanks to a two
armed robot. The robot takes the blanks from the table, feeds the press and takes back the forged 
blanks to deposit them on a second belt. This belt leads the blanks toward a travelling crane that 
brings them to the feedbelt again. The production cell is cyclical only for sake of the case study, 
in reality the blanks would be dropped from the travelling crane into some container. Up to 8 
blanks may be processed in parallel by the system. 

depmit belt 

travelinQ crane robot 

pre» 

feed belt 
elev&tinQ rotwy table 

FIGURE 1 The Production Cell 



www.manaraa.com

Methods for the design of safe process control 185 

The task description document (Lindner, 1993) describes three kinds of requirements: safety 
properties, liveness properties and performance and general software engineering properties. 
There are four classes of safety properties. First, mobility restriction properties that specify that 
a physical element has to restrict its movements within certain limits so as not to damage itself. 
Second, machine collision avoidance properties: for instance the press must not move if one arm 
of the robot is engaged inside it. Third, blanks must not be dropped outside safe regions, and 
fourth, to being distinguished, blanks need to be kept sufficiently distant from each other. The 
stronger liveness requirement expresses that every unforged blank introduced into the system 
will eventually leave it forged. A weaker form of this liveness property expresses that for each 
of the cell elements, if a given blank enters it, it will eventually exit it. The performance 
requirements are irrelevant here since we only address an untimed model. The software 
engineering considerations are related to the maintainability and flexibility of the resulting 
control software. 

3 DESIGN APPROACH 
First of all, we make the hypothesis that the controller we will design will be fast enough for 
controlling the plant, namely it will not loose any significant plant data and hence the 
corresponding models will be only qualitative and untimed. Second, we will comply with the 
following guidelines: as commonly accepted for reactive systems, the specification of the 
controller and the environment it drives will be clearly separated, besides the controller will be 
object-oriented, namely the architecture of the controller will reflect the physical cell 
organization in the sense that to each physical cell element will correspond an (active) object. 
And third, for the purpose of liveness checking, we will consider two versions of the system: a 
closed version where the travelling crane takes back the blanks to the feedbelt and an opened 
one where the travelling crane drops the blanks into a container. 
The complete approach involves 4 description levels of decreasing abstraction. The motivation 
for doing so is to take advantage of a stepwise refinement development. Indeed this framework 
powerfully copes with complexity in two ways. First, the specifications are built progressively 
adding details to a very abstract model, thus relieving the designer of creative effort. The proof 
of the refinement correctness from one level to the next one consists in checking process 
equivalencies. It was carried out with the Concurrency Workbench (Cleaveland, 1993) on CCS 
specifications. Second, the successive description levels allow for checking included subsets of 
the requirements, thus giving a means for addressing the state explosion problem. More 
precisely the first description level only expresses abstract interactions (blank exchanges) 
through synchronous rendezvous between components of the controller, the second level 
integrates detailed interactions (adding for instance "are you ready" synchronization's before 
the effective blank passing), the third level is enriched with the movement orders submitted by 
the cells elementary controllers and the abstract specification of the movement realization. 
Finally the fourth level details the movement realization and includes the physical cell 
environment specification. It is from this last description, structured as three layers, of course 
without the environment specification, that a concurrent implementation will be derived in a 
straightforward way. 

4 PROMELA/SPIN 
SPIN (Holzmann, 1993, 1995) is a generally distributed automated verification system that is 
slowly evolving into an academic and industrial standard for on-the-fly LTL model checking. 
The two main advantages of the tool are that it is firmly founded on formal automata theory, 
and it can handle applications of full-scale industrial size. The tool is still evolving, adopting 
new advances in automata theory as they develop, and is therefore of growing interest to both 
theoreticians and practitioners. 



www.manaraa.com

186 Part One Research Papers 

The description formalism Promela (Holzmann, 1991) was designed as a subset of SOL. It 
allows express a concurrent or distributed system as a set of independent processes (proctype) 
communicating through synchronous (rendez-vous) and ansynchronous channels (chan). The 
data types available are restricted to simple types such as integers and boolean and may serve 
for building richer types with structure and array constructors. Promela's syntax is very close to 
C's and CSP's. There are also extra statements for defining atomic action sequences. It is 
possible to specify logical assertions (assert) inside the models and also more general linear 
temporal requirements applying to state sequences. Some labels are provided for marking the 
system states in order to track deadlocks (end) or cycles without progress (accept, progress). 
We present below (Fig. 2) a simple Promela specification of a four processes system. Three user 
processes compete in accessing a critical section in mutual exclusion. The fourth process 
dijkstra implements a semaphore as a synchronous communication channel on which p and v 
messages are sent {!) and received ( ?). The integer state variable in_critical_section records the 
number of users in critical section and the assertion specifies the mutual exclusion requirement. 

mtype = {p,v}; 
chan semaphore = [OJ of {mtype}; 
byte in_critical_section; 

proctype dijkstra() 
{ do 

:: semaphore!p -> semaphore?v 
od} 

proctype user () 
{ do 

.. semaphore?p; 
I* critical section *I 

in_critical_section = in_critical_section + 1; 
assert(in_critical_section == 1); 
in_critical_section = in_critical_section - 1; 
semaphore!v 

I* end of critical section *I 
od} 

init{ 
atomic{ 

run dijkstra (); 
run user(); run user(); run user() 

FIGURE 2 A Simple Mutual Exclusion System 

The SPIN tool is composed of a simulator, a model-checker and a graphical debugger. From a 
Promela model is possible to do simulations according to several visual modes with a selective 
amount of details (communication interactions, state variables, ... ). More interesting is the 
model-checker that walks through systems of several millions states while checking for 
deadlocks, assertion or temporal claim violations. If an error is found, a trace is stored that 
guides the simulator for a diagnosis session. SPIN is provided with two optimization algorithms 
that insures its great efficiency: one for random-walk searches and another one for partial-order 
reduction techniques. The tool also provides the facility to express LTL (Manna, 1992) 
properties at a high level and automatically translates them into Biichi automata for model
checking purpose. As an example here is the general expression of a progress requirement. 
specifying that every p-state is followed by a q-state: [](p -> <>q) 



www.manaraa.com

Methods for the design of safe process control 187 

5 DESIGN, MODELLING AND VERIFICATION 

The Promela models were written for levels 2 to 4. With level 2 it was possible to check that the 
closed production cell may process up to 8 blanks without deadlocking (it reaches a deadlock 
as soon as the 9th blank arrives), and to check the strong liveness requirements with a 100% 
coverage with supertrace on a 128M memory machine. If the number of blanks is limited (e.g. 
to 4), full search (without supertrace) may be done. Attempts to check these properties on 
models of further levels is possible but the coverage decreases dramatically from the second or 
third blank. 
From level 3 the weak liveness requirement and the machine collision avoidance requirements 
may be verified as well as the properties expressing that the blanks are dropped only in safe 
regions. With level 4 it is possible to check that the blanks are kept sufficiently distant and that 
the element mobility restriction is insured. For all these, the full search is possible. Additionally 
it is verified that the specification does not contain any unreached code. 
We now present some limited excerpts of the Promela models that will be used for showing the 
verification of some significant requirements. 
First, follow the abstract models of the two ends of the ·opened production cell: the feedbelt and 
a container which would be placed after the travelling crane. The feedbelt is a one direction 
moving belt with a motor that may be set to on or off At its end a sensor detects the incoming 
blanks. When a blank arrives at the sensor the belt stops and continues if the next element, the 
rotary table is ready for accepting it. A blank may be put at the entrance of the feedbelt if it is 
empty or as soon as the previous blank has reached the sensor, so this belt may contain two 
blanks at the most. It is modelled with two processes (Fig.3). 

proctype FeedBeltl(chan inl,out) 
{ byte blanknum; 

do 
#if !LIVENESS 

.. inl?blank(blanknum,recvblankforged); 
atomic{ 

prevrecvblank=recvblank; 
recvblank=blanknum; 
assert(recvblank==(prevrecvblank+l)%MAX_BLANKS; 

}; 
out!blank(recvblank,O); 

#else 
.. inl?blank(recvblank,recvblankforged); 

out!blank(recvblank,O); 
recvblank=UNDEF; 

#end if 
od; 

proctype FeedBelt2(chan in,out) 
{ b¥te blanknum; 

} 

bit forg; 
do 
.. in?blank(blanknum,forg); 

out! ready (0, 0); 
out!blank(blanknum,forg); 

od; 

FIGURE 3 FeedBelt 



www.manaraa.com

188 Part One Research Papers 

proctype Container(chan in) 
{ do 
#if !LIVENESS 

.. in?ready(O, 0); 
prevworkblank=workblank; 
in?blank(workblank,workblankforged); 
assert(workblank==(prevworkblank+l)%MAX_BLANKS); 

#else 
:: in?ready(O,O); 

in?blank(workblank,workblankforged); 
#endif 

od; 
}; 

FIGURE 4 Container 

The production of the blanks is modelled by a process that sends them to the feedbelt; they are 
materialized as two-fielded messages, the first field being a blank number modulo 
MAX_BLANKS, the second is a boolean telling if the blank is forged or not. The container 
accepts all the incoming blanks, it is modelled by process of Fig.4. 
The verification of the strong liveness requirement, may be achieved thanks to two safety 
properties and a progress property expressed in L TL (Manna, 1992). The first safety property 
means that there must not be any blank duplication nor blank loss, the second one means that 
the sequence of number of the sent blanks need to be preserved when they are received by the 
container. These two properties may be easily captured with the two assertions appearing in 
Fig.3 and 4 where UVENESS should be set to 0. The progress requirement is verified with the 
following. (11 stands for logical conjunction, AG for the temporal "always" operator (box), and 
AF for "eventually" (diamond): 

m 
(I 0 (P(m)-+ 0 Q(m)) 

i = 1 

or equivalently 

where 

P(b) = ((recvblank =b) A -,recvblankforged) 
Q(b) = ((workblank =b) A -,recvblankforged) 

(1) 

(2) 

(3) 

It is enough that m equals 7 if MAX_BLANKS is equal to 8. Fig.5 shows the related Promela 
definitions, including the Biichi automata for the progress requirement. 

#define P(b) ((recvblank==b) && !recvblankforged) 
#define Q(b) ((workblank==b) && workblankforged) 
/*![}({P(O)-><>Q(O))&&((P(l)-><>Q(l))&& ... && (P(7)-><>Q(7)))) */ 



www.manaraa.com

never{ 
do 
.. skip 

Methods for the design of safe process control 

.. (P(O)&&!Q(OJ J -> goto acceptO 

:: (P(7)&&!Q(7)} -> goto accept? 
od; 

acceptO: 
do 
:: !Q(OJ 
od; 

accept?: 
do 
:: !Q(7) 
od;) 

FIGURE 5 Strong liveness requirement 

189 

We now make explicit the safety requirement related to the absence of collision between the 
press and the robot. A scenario is built with the robot and the press detailed models, and two 
processes that very abstractly emulate the output of the table to the robot and the input of the 
deposit belt from the robot. The safety property is verified with the LTL property: 

0 (pressing -7 (-,arm l_in_press" --,arm2_in_press)) (4) 

Where pressing, arml_in_press and arm2_in_press are variables set respectively by the press 
and the robot in appropriate situations. 

We conclude this section with the process in charge of the execution of the table horizontal 
movements. It will show how the safety requirements regarding machine restriction mobility 
are defined and how the hypothesis of the controller being fast enough is actually modelled. The 
table may move horizontally in 2 directions thanks to a motor (A7) that may be set to on, rev or 
off. Two positions are significant: left and right given by a potentiometer sensor (S9). The 
process TableR accepts commands go _right, go_left on channel in and reports their completion 
on channel out. 

I* specification *I 
proctype TableH(chan in,out) 

{do :: in?go_right;out!at_right; .. in?go_left;out!at_left; od) 

I* detailed model *I 
proctype TableH(chan in,out) 
{ byte command, ack; 

do 
. . in ?command; 

atomic{ 
A7=(command==go_right ->ON : REV); 
1* ....................... Environment ................... *I 

if 
.. (S9==TA_LEFT && A7~=REV) -> assert(FALSEJ; 
.. (S9==TA_RIGHT && A7==0N) -> assert (FALSE); 
.. (S9==TA_LEFT && A7==0N) -> S9=TA_RIGHT; 
.. (S9==TA_RIGHT && A7==REV) -> S9=TA_LEFT; 



www.manaraa.com

190 

}; 

Part One Research Papers 

fi; 
/* ..................................................... *I 
if 
:: (S9==TA_LEFT) -> A7=STOP;ack=at_left; 
:: (S9==TA_RIGHT) -> A7=STOP;ack=at_right; 
fi; 

out !ack; 
od 

FIGURE 6 Table Horizontal Movements 

Fig.6 shows the trivial specification of TableH and its detailed model: when a command is 
received the motor is set in the appropriate direction, then the part of the environment related to 
TableH is given the control and evolves according to possible physical changes. For instance 
when the Table is at left and the motor is on, then the Table will reach the right position. Then 
TableH gets back the control and reports the command completion. The attempts to exceed the 
physical limits are naturally expressed in the environment evolution possibilities, for instance 
if the table is at left and the motor is rev. One may notice how the environment specification is 
separated from that of the controller's and we will see in the implementation section how its 
suppression will lead to the actual controller. The fact that the controller and the corresponding 
environment are merged in a single process may surprise at first. This is just a commodity for 
reducing the verification complexity because they could have been put in separated processes 
communicating through rendezvous for exchanging the motor orders and the sensors values 
(this is actually the way it is expressed in the CCS models). 
In both cases what is important is that the environment is constrained to evolve only under the 
supervision of the controller. We will see in the implementation section that this corresponds to 
the synchronous option for driving the graphical simulation of the production cell, thus 
preserving the hypothesis that the controller is fast enough with regard to the plant. 

6 IMPLEMENTATION 

Below, we outline how the implementations were derived from the Promela models. The 
physical production cell in reduction (Fischer Technik) or the graphical simulation written by 
FZI in Tcl!fk (Ousterhout, 1994) can be driven with the same protocol. On UNIX, commands 
are sent via stdout, and sensor values are read from stdin after having sent the command 
"get_status". In this implementation a particular process called Sampler regularly samples the 
environment and forwards the interesting values of the sensors to the concerned controllers (e.g. 
S9right, S9left). The use of the special command "react" and the option "-snc" for running the 
simulation in synchronous mode, insures that whatever the speed of the controller it will not lose 
any sensor values. 
Synchronous C++, is an extension of C++ that is also very similar to Ada to given extents. Fig. 7 
shows the implementation of TableH. 

active class TableH{ 
Environment *env; 
Table *ta; 
command com; 
@TableH() { 

position ack; 

for (;;) { 
accept In; 



www.manaraa.com

}; 

Methods for the design of safe process control 

switch(com) { 
case go_right: 

env->Putcommand("table_right"); 
break; 

case go_left: 
env->Putcommand("table_left"); 
break; 

}; 
select{ 

accept S9right; 
env->Putcommand("table_stop_h"); 
tack=at_right; 

II 

}; 

accept S9left; 
env->Putcommand("table_stop_h"); 
tack=at_left; 

ta->Hout (ack); 
}; 

public: 

} ; 

void In(command com) (this->com=com}; 
void S9right(} {}; 
void S9left() {}; ... 

FIGURE 7 TableH implementation 

191 

A process template is declared as an active class and instances are created with new as instances 
of usual C++ classes. Synchronous rendezvous are declared as methods of an active class. They 
correspond to Ada task entries and may be used within a select statement for awaiting multiple 
events with the accept clause. This may be done on a local rendezvous as on a call to a 
rendezvous of an other object, in that sense is Synchronous C++ more symetrical than Ada. 
In Synchronous C++ it is possible to structure the program as a network of nested active objects 
but there is no dedicated support to set up connections between active objects; the consequence 
is that the programs tend to have a flat structure and one has to add extra statements for 
initializing the objects so that they know of each other if needed. This is sometimes tedious and 
leads to mixing up the program architecture with its behaviour. 
Darwin (Magee, 1995) allows for expressing the architecture of a system as an interconnected 
network of components each of which may be itself a network of components. The interface of 
each component is a collection of input/output ports. Only for the leaves of such a system does 
one need to express the behaviour. This is done with Regis which is C++ with some predefined 
classes for managing the communication ports. Regis globally allows the same features as 
Synchronous C++, in particular it possesses an equivalent to the select statement but in a more 
hand-coded way than in Synchronous C++, besides it is possible to await for multiple events in 
reception but not in emission, whereas both are allowed in Synchronous C++. The 
implementation of TableH in Regis is similar to the one in Synchronous C++. Fig. 8 shows the 
overall architecture of the production cell application in graphical Darwin created with the 
Software Architect tool. 

Fig.9 shows the corresponding textual Darwin description and also the way TableH is 
interconnected to the whole controller as well as its interface. 



www.manaraa.com

192 Part One Research Papers 

FIGURE 8 Graphical Darwin architecture of the Controller 

I* Prodcell . dw *I 
#include •controller.dw• 
#include •sampler.dw• 
#include "Physicalenvironment.dw• 
component ProdCell (int blanks=B) 

inst 
co Controller(blanks); 
sa Sampler; 
en Physicalenvironment; 

bind 
sa . Sl3raise 
sa . Sl3fa11 
sa.S9left 
sa.S9right 
sa . S7raise 
sa.SBraise 
sa.S4 
sa.SS 
sa.S6 

co . com 

co . Sl3raise; 
co . S13fall; 
co.S9left; 
co . S9right; 
co.S7raise; 
co.SBraise; 
co.S4; 
co.SS; 
co.S6; 

-- en . com; 



www.manaraa.com

sa.samp 
en.sens 

Methods for the design of safe process control 

en.samp; 
sa.sens; 

I* Controller.dw *I 
#include "Table.dw" 
#include "TableH.dw" 

component Controller lint blanks) 
require 

com <port action>; 
provide 

S9left <port int>; 
S9right <port int>; 

inst 
ta : Table; 
tah : TableH; 

bind 
S9left 
S9right 
ta.Hin 
tah.out 
tah.com 

-- tah.S9left; 
-- tah.S9right; 

tah.in; 
ta.Hout; 
com; ... 

I* TableH.dw *I 
component TableH 

provide 
in <port command>; 
S9left <port int>; 
S9right <port int>; 

require 
out <port position>; 
com <port action>; 

FIGURE 9 TableH Implementation Architecture in Darwin 

7 CONCLUSIONS 

193 

This work shows that there are great benefit in using formal methods and concurrency for 
process control with some property to be verified in mind, and that it fits well within a top-down 
design approach. There are lots of similarities between the verification of this case study and 
that of a protocol. First the problem was structured in layers of decreasing abstraction and 
second the strong liveness requirement verification was inspired from that of a sliding window 
protocol studied previously. Since the cell is considered in its normal functioning mode (no 
element breakdown or transmission failure), the problem was further simplified and no fairness 
consideration had to be taken into account. 
The whole specification was written with only synchronous communications and its translation 
into a concurrent programming language was quite easy, the distance between both being very 
small. As forecast, no unforeseen events occurred when running the implementation since many 
design inconsistencies such as deadlocks, safety violations or cycles had been discarded during 
the specification phase. The specification and implementation are quite readable and the whole 
approach should be accessible to any engineer. The obtained models are easily modifiable and 



www.manaraa.com

194 Part One Research Papers 

generic enough to be reused in similar problems. Regarding the requirements, they were almost 
all specified in LTL. SPIN being now provided with a LTL translator, it is possible to remain at 
this high specification level. The new debugging facilities of Xspin (message charts, hypertext 
correspondence, breakpoints, ... ) where of great aid and we hope that SPIN will keep on 
growing, in particular toward verification of process equivalencies. 
Some more details about this case study (reports, models, demos and code) may be found by 
FfP at ltidecl.epfl.ch /pub or by WWW at http://ltiwww.epfl.ch/-cattel/prodcell.html. 

8 REFERENCES 
Holzmann G.J. (1995) What's new in SPIN version 2, AT&T Bell Laboratories. 
Holzmann, G .J. ( 1991) Design and Validation of Computer Protocols, Prentice Hall. 
Holzmann G.J. (1993) Design and validation of protocols: a tutorial, in Computer Networks, 

25(9), pp. 981-1017. 
Cattel, T. (1994) Modelling and verification of a multiprocessor realtime OS kernel, in Pro

ceedings of the Seventh International Conference on Formal Description Techniques, 
Berne, Switzerland. 

Halbwachs N. (1993) Synchronous Programming of Reactive Systems, Kluwer Academic 
Publishers. 

Lindner T. (1993) Production Cell Case study, Task description, ZFI, Karlsruhe. 
Lewerentz C. and Lindner T. (1994) Formal Development of Reactive Systems, Case Study 

Production Cell, in Lecture Notes in Computer Sciences 891, Spinger Verlag. 
Caal G., Divin A. and Petitpierre C. (1994) Active Objects: a Paradygm forComrnunications 

and Event Driven Systems, in Proceedings ofGlobecom'94, San Francisco. 
Magee J., Dulay, N., Eisenbach S and Kramer J. (1995) Specifying Distributed Software 

Architectures, in Proc. of 5th Software Engineering Conference, ESEC'95, Barcelona. 
Keng N., Kramer J., Magee J. and Dulay N. (1995) The Software Architect's Assistant- A vis

ual Environment for Distributed Programming, in Proceedings of Hawaii International 
Conf. on System Sciences. 

Erdogmus H. (1995) Verifying Semantic Relations in SPIN, in Proceedings of 1st SPIN Work
shop, Montreal. 

Milner R. ( 1989) Communication and Concurrency, Prentice Hall. 
Cleaveland R., Parrow J. and Steffen B. (1993) TheConcurrency Workbench : A semantics

Based Tool for the Verification of Concurrent Systems, in ACM TOPLAS, Vol. 5, No 1., 
January, pp. 36-72. 

Manna Z. and Pnueli A. (1992) The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer-Verlag. 

Ousterhout J. (1994) Tel and the Tk toolkit, Addison-Wesley. 

9 BIOGRAPHY 
Thierry Cattel has obtained a PhD in Computer Science at the University of Franche-Comte, 
Besan9on, France in 1992. He then has spent 18 months as an attached researcher at the 
Software Engineering Laboratory of the National Research Council of Canada, Ottawa where 
he aimed at specifying and verifying the Harmony real-time multiprocessor operating system. 
He has been first assistant at the Laboratoire de Teleinformatique, EPFL, Lausanne since 
September 1994. His research interests are Concurrent Software Engineering, Temporal Logics 
and Compositionnal Verification. 



www.manaraa.com

17 
Using dataflow algebra to analyse the 
alternating bit protocol 

A. J. Cowling & M. C. Nike 
Department of Computer Science, University of Sheffield, 
Regent Court, 211 Portobello Street, Sheffield, S1 4DP, U.K. 
Telephone: +44 114 282 5580; Fax: +44 114 278 0972; 
Email: A.Cowling@ dcs.shef.uk.ac 

Abstract 
The alternating bit protocol is taken as a case study of a parallel distributed system, and it is shown 
how the dataflow algebra approach can be used to specify and then analyse the overall behaviour of 
a communications system that uses this protocol. The paper summarises the use of dataflow 
algebras for specifying such systems, and' introduces the main features of the protocol that are 
relevant to the case study. Models are developed for two different cases of the behaviour of the 
system, distinguished by different conditions on the length of the timeout period that is integral to 
the operation of the protocol. It is shown that under one of these conditions the overall operation of 
the protocol is such that it can not be guaranteed to operate correctly, even though the individual 
processes may operate correctly. A brief comparison is made between the use of the dataflow 
algebra approach for carrying out such analyses and the use of process algebra models. 

Keywords 
Dataflow algebra, process algebra, formal specification, formal verification, alternating bit protocol. 

1 INTRODUCTION 

The fundamental characteristic of parallel or distributed systems is that they consist of a number of 
concurrent processes which interact in some fashion, so that their correct operation depends not 
only on the correctness of the individual processes, but also on these processes interacting correctly. 
In principle it ought to be possible to analyse these interactions in either a top-down or a bottom-up 
fashion, but in practice the analysis methods available are nearly all bottom-up: that is, they start 
from descriptions of the behaviour of the individual processes, and then analyse the way in which 
these are composed to produce the behaviour of the complete system. These descriptions of the 
individual processes have to contain some representations of their abstract state spaces, and as the 
descriptions are combined the size of the composite state space for the whole system explodes 
combinatorially with the number of processes. 



www.manaraa.com

196 Part One Research Papers 

Consequently, for these methods the complexity of the analysis process grows similarly, unless 
ways can be found for pruning it, and so the starting point for this paper is the hypothesis that some 
form of top-down description of the allowable behaviour of the overall system is needed to guide 
this pruning. To justify this, the paper presents a case study of an approach that we are developing, 
based on what we call the dataflow algebra model. This is intended to be complementary to process 
algebra models, but it emphasises system-wide patterns of communication rather than those for 
individual processes. The example used in the study is the alternating bit communications protocol, 
which we have chosen largely because process algebra models of different versions of it have 
already received a lot of attention, as in Milner (1983), although without producing the results 
concerning the overall correctness (or lack of it) for the version of the protocol that we present here. 

In section 2 of the paper, therefore, we firstly describe the dataflow algebra approach, and in 
particular explain how it can be used to provide two different levels of detail in the specification of a 
system, which we term the syntactic and the semantic levels respectively. Section 3 then 
summarises the important features of the alternating bit protocol, indicating the different variants of 
it that can exist and identifying the particular variant that is used for this case study. Sections 4 and 
5 present specifications of the protocol at these two levels of detail, and then sections 6 and 7 show 
how these are analysed for two cases, the first representing a situation where the protocol can be 
guaranteed to operate correctly and the second case one where incorrect operation is proved to be 
possible. Finally in section 8 we make a comparison between this approach and ones based on 
process algebra, and summarise the conclusions to be drawn from this comparison. 

2 DATAFLOWALGEBRAMODELS 

The basic concepts of dataflow algebra models are described in more detail in Cowling (1995), and 
are derived from the data flow diagrams used in nearly all systems analysis methodologies, such as 
SSADM (CCTA, 1990) or Yourdon (1989) and its derivatives. The fundamental model underlying 
the algebra is that a system consists of processes which communicate via unidirectional channels, so 
that the basic element of the algebra is an action which consists of a single message moving from a 
source process s to a destination process d via some channel c: this action is denoted s ! c ? d. At 
the syntactic level we are then concerned with describing the behaviour of a system in terms of the 
allowable sequences of such actions, which in CSP terminology (Hoare, 1985) would be the 
allowable traces, so that the dataflow algebra is essentially an algebra of traces. The basic 
operations of this algebra are thus the concatenation of two sequences of actions (written s1 ; s2) 
and the choice between two sequences (written s1 I s2): for the purposes of specifying a system 
this choice is treated as nondeterministic. 

From these basic operations, and the silent action £, two other main operations can be derived. 
One of these is repetition, so that s" for any natural number n denotes n repetitions of s; also s* 
denotes zero or more repetitions of s and s+ denotes one or more repetitions of s. The other 
operation is parallel composition, written s1 II s2, which denotes the choice between any of the set 
of sequences obtained by an arbitrary interleaving of the actions of s1 and s2. As will be seen later, 
in some cases we need to restrict the set of possible interleavings, but the issue of how best to 
model these still requires further investigation. 

A syntactic level specification of a system then consists of the set of expressions that define its 
permitted traces, and this can also be thought of as forming the production rules for a grammar 
which will generate the allowable set of traces. Then, what we call a semantic level specification 
(which is not the same thing as the sets of traces, even though these would often be understood as 



www.manaraa.com

Using data flow algebra to analyse the alternating bit protocol 197 

constituting the semantics of the grammar) can be developed by incorporating into this description 
specifications of the data that is contained in the messages. These specifications will define both the 
types of the data that can be communicated along each channel, and the processing which must be 
carried out in order to produce the data items that are output onto a channel and to handle the data 
items received from a channel. Components of these are embedded in the basic grammar to form an 
attribute grammar, in the same way as attribute grammars for programming languages are used to 
embed semantic definitions into their syntactic descriptions. 

One effect of this embedding is that the sequences of actions define orderings on the execution of 
the various functions that specify the processing, and these orderings can be used in constructing 
functions to represent the overall processing of the system. Defining and using such orderings 
seems to us to be one of the fundamental problems in reasoning about the behaviour of parallel 
systems, and the approach that we are adopting here is intended to be applicable to any formal 
specification methodology that could be used for defining the individual components of the 
processing. In the example presented here, the attributes will be used to embed specifications that 
have been written in OBJ (Goguen and Winkler, 1988). 

3 THE ALTERNATING BIT PROTOCOL 

The alternating bit protocol (ABP) was introduced by Bartlett, Scantlebury and Wilkinson ( 1969) as 
a means of transmitting data reliably across an unreliable medium. It is an automatic repeat request 
protocol, in which both the packets of data and the replies carry a single-bit sequence number (the 
alternation bit) which is used to encode whether or not data has been correctly received on the other 
side of the medium. In the original description it is assumed that the data contains check bits from 
which the receiver determines whether to request a retransmission, but in fact that original 
description would be equally valid if the receiver is merely expected to echo the data back, so that 
the transmitter checks whether or not it matches what was originally sent. 

~0 Bo 

(a) The Sender Process (b) The Receiver Process 

Figure 1 Finite State Automata for the Alternating Bit Protocol. 

In Figure 1 the finite state automata for the sender (a) and receiver (b) processes are shown. These 
are similar to the diagrams in the original, except that here data is only being passed in one 
direction, and the timeout has been included on the relevant arcs. The labels on the arcs represent 
values being received or sent by each process, with S denoting data packets and R denoting replies. 



www.manaraa.com

198 Part One Research Papers 

The underlined labels represent transmissions, and the subscripts represent the values of the 
alternation bit for the messages. The dotted arrows in (a) denote the acceptance of a new packet for 
transmission, after a reply has been received that indicates that the packet had been received 
correctly. Delivery of the item currently being sent occurs when the receiver accepts a packet with 
the alternation bit "flipped", and the dotted arrows in (b) show where this happens. 

4 A SYNTACTIC SPECIFICATION 

Prod a 
Sender Receiver Cons 

Figure 2 Data Flow diagram for the Alternating Bit Protocol system. 

Figure 2 shows the data flow diagram for a system using this protocol, with a producer process 
Prod using the intermediate processes to transmit packets to a consumer process Cons. For 
simplicity, it is assumed that the medium can be modelled as two separate processes, M1 and M2, 

representing respectively the medium for the journey from the sender to receiver and vice-versa. 
The medium can lose or corrupt packets, but it is assumed that it can not corrupt the value of the 
alternation bit in a packet. Also for simplicity, only a single channel is shown from the Clock, on 
which timeouts are signalled to the Sender: in practice there would need to be a reverse channel as 
well, on which messages were sent to start the clock timing. The topology of this system can then 
be defined by listing the basic actions that can occur, as follows: these will be the terminal symbols 
for any syntactic specification of the system. 

ToS =Prod! a? Sender 
S1 = Sender ! q ? M, 
R1 = Receiver ! x ? M2 
Deliver = Receiver ! d ? Cons 

4.1 Simple Cyclic Operation 

timeout = Clock ! t ? Sender 
S2 = M, ! r ? Receiver 
R2 = M2 ! y ? Sender 

If no corruption or loss occurs, then the operation of the protocol will be cyclic, so that in terms of 
these actions the basic loop for sending one packet would be denoted S 1 ; S2 ; R, ; R2• This simple 
operation does, however, depend on the value of the timeout being greater than the maximum time 
that can be taken for the whole loop, so that no parallel actions can take place. Under this 
assumption, the full protocol ABP can be described as follows: 



www.manaraa.com

Using data flow algebra to analyse the alternating bit protocol 199 

Start= S,; (timeout; S1)*; S2 

Reply= R,; (timeout I R2) 

OneCyle = MStart; Reply; Loop1* 

MStart = ToS; Start; Deliver 
Loop1 = Start ; Reply 
ABP = OneCyle" 

The basic operation of this is that the ToS action represents a new value being accepted for 
transmission, and the flipping of the alternation bit. Any packet loss results in a timeout, as in both 
Start (where the subsequent restarting of the cycle is shown explicitly) and Reply (where the 
restarting is implicit in the definition of OneCycle). When a packet with this new bit is received 
across the medium, the Receiver delivers the currently held message and holds the new one until 
the bit flips again. The Loop1 component describes the fact that after the Deliver there may be 
multiple retransmissions of the same piece of data: once they finish OneCycle is over and a new 
one can begin. Therefore, ABP is simply an arbitrary number of executions of this cycle. 

4.2 Parallel Operation 

The time taken for the basic cycle (ie S, ; S2 ; R1 ; R2 ) is not usually deterministic, and so if the 
timeout period were to be gradually reduced there would come a point in the operation where a 
timeout would sometimes occur part way through a cycle that had not yet finished, and so would 
trigger the start of a new cycle in parallel with the existing one. The significance of this case is that 
it could give rise to unreliable operation, as a consequence of the system-wide behaviour being 
incorrect rather than because of any failure of an individual process. To see how this could occur 
requires a more elaborate model of the overall behaviour, to describe the possible parallelism: a 
time sequence diagram for the actions involved is shown in Figure 3. 

If we assume that the timeout period is larger than the time for a "half loop", but smaller than the 
time for a whole loop, then essentially the parallel operation can start once an outward message has 
reached Receiver, as represented in the diagram by the first part of the main sequence, labelled 
Start 1. At that point a timeout could occur, indicated by the dotted line, and this would cause a 
duplicate sequence to start up, labelled Duplicate 1 : this operates in parallel with the reply being 
transmitted back as part of the main sequence (labelled Rest 1 ). Any further timeout, however, 
could not occur as part of this duplicate sequence, as by then the original cycle would have finished 
(indicated by the dotted line after Rest 1) and a new main loop would have started, labelled Start 
2: consequently any such timeout would form part of that, indicated by the dotted line after Start 2. 
Under these assumptions, therefore, there can at most be two activities occurring in parallel. 
(Further shortening the timeout period could give rise to the possibility of more parallel activities, 
but we shall not consider that case in this paper.) 

_st_a_rt_1--+ ~·~ 1 :&art 2 f c _st_a_rt_3--+ 

Duplicate 1 Duplicate2 

Figure 3 Time sequence diagram for parallel operation. 



www.manaraa.com

200 Part One Research Papers 

Thus, while the parallel activity of the duplicate sequence can continue beyond the start of the next 
main loop, it can only overlap with it so far, indicated by the thick vertical line. In principle, 
therefore, it must have finished before the point in the main loop at which another duplicate could 
start (ie the start of Rest 2). In practice, even though the sequence must have finished by then, its 
effects may not have, in that the duplicate may have returned a message to the Sender which 
effectively fools it into acting as though the new main sequence has already finished, and so causes 
it to send another message out. This is, however, modelled satisfactorily by the possibility of a new 
duplicate sequence starting up, as indicated by the start of Duplicate 2, except that in this case 
there will be no timeout involved, either in the duplicate sequence or the main one (ie in this case 
the dotted line before Rest 2 would not correspond to a timeout). Thus, although some duplicate 
sequences will start with a timeout, not all of them will. The duplicate sequence can therefore be 
defined as follows. 

Duplicate = (timeout I £) ; S1 ; DupRest DupRest = £ I Sa ; R1 I Sa ; R1 ; Ra 

For the main loop there are four different cases that need to be considered, although not all are 
shown in detail in Figure 3. The cases depend on whether or not the alternation bit has flipped at the 
start of the loop, and whether or not the medium M1 loses the message on the first time round the 
loop. With Start and Reply defined as in the simple cyclic case above, these four cases can in 
principle be expressed as 

Loop2 = ((Reply ; S1 ; Sa) II Duplicate) - bit not flipped, no loss 
I (((Reply; S1 ; timeout) II Duplicate) ; Start) - bit not flipped, loss 
I ((Reply ; ToS ; S1 ; Sa ; Deliver) II Duplicate) - bit flipped, no loss 
I (((Reply; ToS; S1; timeout) II Duplicate); Start; Deliver)- bit flipped, loss 

ABP = MStart ; Loop2" 

In practice, though, there are two problems with this specification, both arising from the fact that 
the parallel composition operation s1 II s2 is defined in terms of arbitrary interleavings of the 
sequences s1 and s2. Here, since both Reply and Duplicate can contain the actions R1 and Ra, an 
arbitrary interleaving of them could contain either R1 ; R1 ; Ra ; Ra or R1 ; Ra ; R1 ; Ra. One 
problem is therefore that the first of these would only be valid if the medium Ma had some internal 
buffering capacity, and while this might be the case in a complex communications system, it would 
not be true of the simplest form of medium. The other problem is that the second interleaving is 
valid, but only makes sense if the first R1 were associated with Reply rather than Duplicate. We 
are still exploring various ways of expressing the sort of constraints that are required in these two 
cases, but space does not permit discussion of them here. We are, however, satisfied that they can 
be expressed, and that for this example it is legitimate to assume where necessary that the messages 
pass through the medium Ma in the order that one would expect. 

5 A SEMANTIC SPECIFICATION 

In the grammar, an action describes the output of a value from one process and the input of this 
value into another process. The semantics of an action can therefore be described by defining 
functions which model the input/output behaviours of the component processes. If each process has 
an output and input function, then the behaviour of an action will consist of the input function of the 



www.manaraa.com

Using data flow algebra to analyse the alternating bit protocol 201 

second process applied to the result produced by the output function of the first process. Then, from 
these expressions describing the input and output of each action, expressions can be built up to 
describe the behaviour of sequences of actions, and so finally an expression can be built up 
describing the behaviour of the whole system. In this particular example, we want to use this 
expression to show that the stream of values input into the system by Prod are all output at the 
other end to Cons, without any corruption. This can be done in the simple cyclic case, but not in the 
case of parallel operation, where we shall show that the protocol can be unstable. 

Attribute grammars (Knuth, 1968) can be used to describe this level of operation of the system, in 
similar fashion to their use for specifying compilation of programming languages and other 
computations that involve tree structures (Kastens, 1991). Thus, each basic action is required to 
have attributes defined for it that we shall call Src and Dest, whose values will be the appropriate 
functions. In addition, there will have to be global variables representing the effects of these on the 
states of the different processes, and these will need to be passed around as an attribute of the 
actions, and used to construct the corresponding attributes for complete sequences. The semantic 
specification will therefore be built up by constructing specifications for the individual processes, 
and then attaching the appropriate functions as attributes to the actions. Attributes for the sequences 
can then be synthesised from these. 

5.1 Process Specifications 

For each process, the specification is defined in tenns of some suitable abstraction of its state, and 
so could in principle be treated as a hidden state algebra (Goguen, 1991), although in presenting 
this example it is simpler to have the state models explicit. For each specification, therefore, the 
state of the process will be denoted simply by State, and then input operations defined to 
correspond to the generators for this abstract state, and output operations defined as observers of 
the state. The equations of the specification will then define in abstract tenns how the outputs are 
computed from the inputs, and so can be used to reduce expressions involving these outputs. 

In what follows, the basic type Message is assumed to be defined as Bit x Value, with observer 
operations bit and value, and with an operation flip defined on the type Bit. In principle Value 
could be any suitable type, which in practice would probably be a string of characters: it is assumed 
here to include a null element £ which is different to any meaningful value that can be transmitted. 
Models are given for each of the four processes in the system. 

The Media 
These two processes are identical, and each requires an input function, which accepts a message 
and stores it in some internal ''register" (ie its state), and an output function which delivers the 
contents of that register. Each also requires a "corruption" function, which randomly corrupts a 
message's value, but not its alternation bit, and which does so in such a way that corruption in one 
medium can not reverse the effects of corruption ·in the other. The signatures of and equations for 
these functions are as follows. 

M,.in: Message x State-+ State 
M,.out: State-+ Message 
c : Message -+ Message 

M,.out(M,.in(a,b)) = c(a) 
bit(c(x)) = bit(x) 

Ma.in : Message x State -+ State 
Ma.out : State -+ message 
d : Message -+ Message 

Ma.out(M2.in(a,b)) = d(a) 
bit(d(x)) = bit(x) 



www.manaraa.com

202 Part One Research Papers 

value(c(x)) = value(x), or value(d(x)) = value(x), or 
value(c(x)) * value(x), randomly value(d(x)) * value(x), randomly 
value(c(x)) * value(x) => value(d(c(x))) * value(x) 

The Sender 
The state of this process consists of a pair of registers: the first one to hold the data that is currently 
being sent across the network, and the second one for the currently returned value. The process then 
requires two input functions and one output function, with the following signatures: 

Sender.in, : Value x State ~ State 
Sender.in2 : Message x State --+ State 
Sender.out : State --+ Message 

•• input of a new item of data from Prod 
•• input of an item of data from R2 

Note that there does not need to be an input function to correspond to the arrival of a timeout, 
because this is a control flow rather than a data flow, and so its arrival does not alter the data state 
of the process. In terms of the state these three functions can be defined as follows, and equations 
derived from the definitions for reducing expressions involving these functions. 

Sender.in,(x, (v,,v2)) = ( (flip(bit(v,)),x), (bit(V2). £)) 
Sender.in2(y, (v,v2)) =If bit(y) = bit(v,) then (v,y) else (v,, v2) endif 
Sender.out((v,,v2)) = v, 

value(Sender.out(Sender.in,(x, (v,v2)))) = x 
bit(Sender.out(Sender.in,(x, (v,,v2) )) ) = flip(bit(v,)) 
Sender.out(Sender.in2(x, (v,,v2))) = v, 

(l) 
(2) 
(3) 

Here, rules I and 2 represent the activity of a newly accepted value x being ouput as a message, 
while rule 3 represents the retransmission of an already held value (ie the one in the first register) 
after a comparison has proved incorrect, or after a "rogue" reply has been discarded. 

The Receiver 
This process also needs a pair of registers: the first one to hold the data that is currently being 
received, and the second one forming an "output buffer" into which it moves the current message 
that it is holding (ready for delivery) when it receives a message with the bit flipped. A full analysis 
of whether the system could be made to operate correctly would require complete histories to be 
stored, but that is not necessary here. 

In terms of the state changes, there need to be two basic input functions, one (in,) for the case 
where the bit has not changed and the other (in2) for the case where it has: the function in can then 
be synthesised from these. There will also be two output functions, one corresponding to a Deliver 
action and the other to the transmission of a reply. The signatures of these operations will then be: 

Receiver.in,, Receiver.in2, Receiver.in: Message x State--+ State 
Receiver.out1 : State --+ Value output for "deliver" port 
Receiver.out2 : State --+ Message •• output for "retransmit" port 

The equations defining these, and the reductions that can be made, are: 



www.manaraa.com

Using data flow algebra to analyse the alternating bit protocol 203 

Receiver.in,(x, (v,,v2)) = (x,v2) 
Receiver.in2(x, (v,,v2)) = (x,v,) 
Receiver.in(x, (v,v2)) =If bit(x) = bit(v,) 

new message replaces old in "current" buffer 
also old message (v,) placed in "output" buffer 

then Receiver.in,(x, (v,v2)) else Receiver.in2(x, (v,v2)) endlf 
Receiver.out,((v,v2)) = value(v2) -- deliver "output" buffer value 
Receiver.OUb((v,v2)) = v1 -- current message output for retransmission 

Receiver.ouM Receiver.in(X;, (v,v2))) = X; 
Receiver.out1( Receiver.in2(X;, (x,.,,v2))) = value(X;.,) 

(4) 
(5) 

Here, rule 4 represents the retransmission of a received message back to the sender, where the 
same message is sent back irrespective of which of the two input functions was invoked. Rule 5 
represents the delivery of the value of the old message held (viz X;.,) in the case where a value has 
just been accepted with a different bit. 

5.2 Actions And Their Attributes 

A global attribute States contains the array of process states, where the elements will be denoted as 
though indexed by the process names. Components of the state of a process p will be denoted as 
States[p,1] and States[p,2], as we have not formally defined projection functions for the pairs. 
Then, for each action the attributes Src and Dest can be defined in terms of the operations 
introduced above, and hence its effect can be synthesised. Most of the actions will have the same 
basic form, and this is illustrated for R2, which uses M2.out and Sender.in2: 

Action R2 Is R2.Src = M2.out(States[M2]) 
R2.Dest = Sender.in2(R2.Src, States[Sender]) 
States[Sender]=R2.Dest 

EndActlon 

Similarly, the S, action uses Sender.out and M,.in; the action for S2 uses M,.out and Receiver.in; 
and the action for R, uses Receiver.OUb and M2.in. The only exceptions to this form are ToS and 
Deliver, since we have not specified any abstract operations for Prod or Cons, and so have to 
define directly the values accepted or delivered. These actions will therefore be written as: 

Action ToS Is ToS.Src = X; 
ToS.Dest = Sender.in,.(ToS.Src, States[Sender]) 
States[Sender] = ToS.Dest 

EndActlon 

Action Deliver Is Deliver.Src = Receiver.out1(States[Receiver]) EndActlon 

6 ANALYSIS OF RELIABLE OPERATION 

To show that a value will be delivered correctly, a sequence has to be "translated" into the 
expressions it forms, which can be illustrated with the following example: 



www.manaraa.com

204 Part One Research Papers 

ToS; 8 1 ; timeout; 8 1 ; 8 2 ; Deliver; R,; R2; ToS; S,; S2; Deliver 

Each ToS action marks the start of the loop OneCycle, and associated with it will be an invariant 

that for States[Sender,1], States[Sender,2] and States[Receiver,1] the bits must all be the 

same. Proving maintenance of this invariant will be an important part of proving correct operation 

for the overall system. We assume that Sender is initially in state (v,v), where v = (O,x1.,), meaning 

that a succesfulloop has been completed; and that Receiver is in the state (v,y), where bit(y) = 0. 
Using the attributes we can determine the state change resulting from each individual action, and 

the equations can then be used to reduce these expressions and the ones that are built up from a 

sequence of actions. Table I sets out the results for the above sequence, showing the state changes 

that result from each action, to establish that the input value X; is finally delivered correctly. 

Table 1 State changes for a sequence of actions that operates correctly 

States 
Action [Sender] [M1] [Receiver] [M2} Notes 
ToS (1,X;),(O,E) new bit= 1 
S, (1,X;) but is lost 
timeout no effect on data state 
s, (1,X;) 
s2 Ct.(1,X;),v new bit= 1 
Deliver output previous value of v 

R, ~1~ 

R2 (1,X;),di(Ct.(1,x;)) - new bit= 1 
ToS (O,X;.1),(1,E) 
s, 
82 
Deliver output value(c..(1,x1)) 

Here, the significance of the bit changes is that the first S2 action reestablishes one part of the 

invariant, and then the R2 action reestablishes the second part. As the sequence continues after this 
R2 action with a ToS (ie another loop of OneCycle), we must have value(States[Sender,2]) = 

value(States[Sender,1 ]): otherwise further iterations of Loop1 would occur until this condition 

was satisfied. The condition itself reduces to value(d1(ck(1,x1))) = x1, and as d1 can not reverse a 

corruption produced by Ct. we must therefore have value(c..(1,x;)) = X;. This guarantees that x1 is 

output unchanged from the Receiver, which is the property that we wished to show. 

7 ANALYSIS OF FAULTY OPERATION 

The faulty operation can only occur in the case where a timeout causes parallel activity to occur, 

and this is illustrated by the sequence of actions shown in Figure 4, where the values of the bit 

associated with the message are shown above each action, along with an M or D to indicate whether 

the action is part of the Main or Duplicate sub-sequence respectively. 
The basic operation of this sequence can be described informally as follows. It begins with x1 

being accepted by the Sender and sent, not being corrupted by c, and being received, resulting in 
a Deliver that outputs X;.,. A timeout then occurs, causing another copy of x1 to be sent. This is 

(O,X;.
(1,X;),(O,E) (1,X;),(O,E) 



www.manaraa.com

Using data flow algebra to analyse the alternating bit protocol 205 

corrupted by c2, but when it reaches the Receiver it will be stored, replacing the previous copy. 
Meanwhile, the correct copy will have been received back at the Sender, but has not been 
corrupted by d1• The Sender will therefore accept a new value X;.,, will flip the bit, and so will 
ignore the corrupted version (because it has the wrong bit value) when it is returned. Thus, when 
the message containing XH-1 is received, with its bit different to the one sent with X;, the currently 
stored value of x1 will be delivered, even though it is corrupt. 

0 0 0 1 OD OM OD OM 1M OD 1M OD 1M OM 
ToS ; 81 ; ~ ; Deliver ; s, ; A, ; 82 ; R2 ; ToS ; A, ; s, ; A2 ; ~ ; Deliver ... 

r nmeow r r r 
X; stored in 
Receiver 
(uncorrupt) 

X; stored in 
Receiver 
(corrupt) 

corrupt X; 
ignored by 
Sender 

current stored 
X; delivered 
(corrupt) 

Figure 4 A sequence of actions that operates incorrectly 

This can be analysed formally by working through the sequence of attributes to the actions in the 
same way as was done above for the simple cyclic operation. The results of this are presented in 
Table2. 

Tablel State changes for a sequence of actions that operates incorrectly 
States 

Action [Sender] [M1] [Receiver] [M2] Notes 
ToS (1,X;),(0,£) 
s, (1,X;) 
82 c,(1,X;),(0,X;.,) c, does not corrupt 
Deliver X;.., is output 
s, (1,X;) 
R, c,(1,x.) 
82 Cz(1,X;),(O,X;..,) Cz does corrupt 
R2 (1,X;),d,(c,(1,x.)) d, does not corrupt 
ToS (O,X;.,),(1,£) 
R, Cz(1,X;) 
s, (O,XH.,) 
R2 unchanged input has wrong bit 
82 Ca(O,X;.,),Cz(1,X;) 
Deliver corrupt X; output 

8 SUMMARY AND CONCLUSIONS 

We have therefore been able to demonstrate that the dataflow algebra model of this version of the 
alternating bit protocol is sufficiently powerful to enable the overall correctness of the system to be 
analysed, both in cases where it is guaranteed to function correctly and cases where it will fail. 



www.manaraa.com

206 Part One Research Papers 

These results are not particularly significant for the protocol (where they merely illustrate why 
setting timeout periods in protocols is a tricky problem for communications engineers), as most 
practical protocols now use some form of check bits rather than echo checking, and a version of this 
protocol that used check bits would not fail in the way that has been analysed here. What is 
important about these results is that, once the syntactic specification has been built for the whole 
system and the functional specifications constructed for the individual processes, then not only is 
their synthesis into the semantic specification almost mechanical, but so too is the analysis of it. 

This simplicity is not because of any particular properties of the underlying computational model, 
as it appears that this should be equivalent to that of a value-passing process algebra such as the 
one used in (Bezem and Groote, 1994), although there is still much more work needed to explore 
the relationship between the dataflow algebra and process algebra approaches. Rather, the dataflow 
algebra approach gains its simplicity by making explicit the underlying chains of cause and effect 
within the processing that are implemented by the passing of messages between processes, whereas 
in a process algebra approach these chains need to be inferred (if possible) from patterns of 
behaviour that are implicit within the action trees generated by the algebra. In the dataflow algebra 
approach these explicit chains of causality are reflected in the essentially linear nature of the 
sequences, which then makes straightforward the derivation and reduction of the expressions for the 
state changes. Also, reasoning about the properties of the system is guided by the occurrence of 
loop structures in the sequences, as these highlight points where suitable invariants and stopping 
conditions need to be defined over the states of the processes. 

Making explicit these chains of causality should also have a practical benefit, in that experience of 
the process of designing parallel and distributed systems suggests that designers will usually have 
at least an intuitive idea of the pattern of causality that they want to create. Indeed, some design 
approaches place considerable emphasis on describing the input-output behaviour of systems in 
terms of such patterns: for example the "use cases" of the ObjectOry method (Jacobson et al, 
1992). Providing a specification methodology which allows designers to capture this intuition 
within a formal notation, so that it can be reasoned about, should therefore assist in formalising the 
development of such systems. 

To be of maximum benefit, of course, this approach will need to be related more firmly to the 
models used to capture the behaviour of individual processes, such as process algebra models, but 
this still requires further investigation, along with the issue of how best to express the sort of 
relationships between the semantic and syntactic levels of specification that are important to 
constraining the interleavings generated by parallel composition of sequences of actions. Despite 
this, though, we believe that this example has demonstrated the validity of the dataflow algebra 
approach, and its potential value as a model for supporting the process of reasoning about the 
correctness of the overall behaviour of parallel and distributed systems. 

9 ACKNOWLEDGEMENTS 

The germ of the original idea behind this work was provided by George Wilson, and its 
development was greatly assisted by discussions with colleagues in the parallel processing research 
group, and notably Jon Kerridge, about their approaches to designing concurrent systems. The 
work done by Dave Cash in developing an early version of the notation used here for the syntactic 
level of the specification is also acknowledged. 



www.manaraa.com

Using data flow algebra to analyse the alternating bit protocol 207 

10 REFERENCES 

Bartlett, K., Scantlebury, R. and Wilkinson, W. (1969) A Note on Reliable Full-duplex 
Transmission over Half-duplex Links. Communications of the ACM, 12, 260-261. 

Bezem, M.A. and Groote, J.F. (1994) A Correctness Proof of a One-bit Sliding Window Protocol 
in J1CRL. Computer Journal, 37,289-307. 

C.C.T.A. (1990) SSADM version 4 reference manual. NCC Blackwell, Oxford. 
Cowling, A.J. (1995) Dataflow Algebras as Formal Specifications of Data Flows. University of 

Sheffield Department of Computer Science Research Report CS-95-18. 
Goguen, J.A. and Winkler, T (1988) Introducing OBJ3. Technical Report SRI-CSL-88-9, SRI 

International, Menlo Park, CA. 
Goguen, J.A. (1991) Types as Theories, in Topology and Category Theory in Computer Science 

(eds. G.M. Reed, A.W. Roscoe and R.F. Wachter), Oxford University Press, Oxford. 
Hoare, C.A.R. (1985) Communicating Sequential Processes. Prentice Hall, Englewood Cliffs, NJ. 
Jacobson, 1., Christerson, M., Jonsson, P. and Overgaard, G. (1992) Object-Oriented Software 

Engineering: A Use Case Driven Approach. Addison-Wesley, Wokingham. 
Kastens, U. (1991) Attribute Grammars as a Specification Method, in Attribute Grammars, 

Applications and Systems (eds. H. Alblas and B. Melichar), Lecture Notes in Computer 
Science 545, Springer-Verlag, Berlin. 

Knuth, D.E. (1968) Semantics of Context-Free languages. Mathematical Systems Theory, 2, 127-
145. 

Milner, R. (1983) Communication and Concurrency. Prentice Hall, Englewood Cliffs, NJ. 
Yourdon, E. (1989) Modem Structured Analysis. Prentice Hall, Englewood Cliffs, NJ. 

11 BIOGRAPHIES 

Tony Cowling obtained a BSc with Honours in Computational Science and Mathematics in 1970 
from the University of Leeds, followed by a PhD in 1977. Since 1973 he has been a lecturer in the 
Department of Computer Science at the University of Sheffield, with research interests in the 
formal modelling of software systems and in the teaching of software engineering. 

Martin Nike obtained a BSc with Honours in Physics and Computing from Coventry University in 
1992. He then gained an MSc in Parallel Computing and Computation from the University of 
Warwick in 1994. He is currently studying for a PhD at the University of Sheffield. 



www.manaraa.com

18 
A hierarchical classification of 
overheads in parallel programs 

J. M. Bull 
University of Manchester 
Centre for Novel Computing, Department of Computer Science, 
University of Manchester, Oxford Road, Manchester, M13 9PL, UK. 
Telephone: 0161-2756144· Fax: 0161-2756204. 
email: markb<Ocs .man. ac. uk 

Abstract 
Overhead analysis is a powerful conceptual tool in understanding the performance be
haviour of parallel programs. Identifying the source of overheads in the program requires 
the classification of overheads into different types. We present hierarchical classification 
schemes for both temporal and spatial overheads, which facilitate the analysis of parallel 
programs on a wide variety of parallel architectures by providing a flexible framework for 
describing performance behaviour. The issue of measuring the various classes of overhead 
is also addressed, with a view to improving the utility of performance analysis tools. 

Keywords 
Parallel programs, temporal overheads, spatial overheads, classification 

1 INTRODUCTION 

Performance tuning of programs is a key activity undertaken by users of parallel com
puters. An important part of this process consists of reducing the overheads associated 
with parallelism (as opposed to tuning the single processor performance of the parallel 
code). These overheads are of two types-temporal and spatial. Reducing temporal over
heads assists the programmer in obtaining an acceptable execution time for the program 
in question, while reducing spatial overheads allows the program to make acceptable de
mands on memory. What is 'acceptable' will, of course, depend on the intended use of the 
program. At any stage in the process of performance tuning a program, it is useful for the 
programmer to know the source of the observed overheads. The purpose of this paper is 
to present classification schemes for both temporal and spatial overheads that encompass 
all sources. In contrast to previously proposed schemes, {see, for example, Burkhart and 
Millen (1989), Crovella and LeBlanc (1994), Eigenmann {1993), Tsuei and Vernon (1990) 
and Vrsalovic et al. (1988)) ours is hierarchical. The motivation for this is that the impor
tance of any given class of overhead can vary considerably, depending on the program and 
architecture being considered. Thus any single-level classification will either omit some 



www.manaraa.com

A hierarchical classification of overheads 209 

important detail, or include unnecessary complexity for some program/architecture com
binations. A hierarchical classification can be extended in areas of interest, or truncated 
in classes that are negligible, for the particular problem being considered. Thus it hoped 
we can provide a more flexible framework in which the programmer can reason about the 
performance of a program. 

As discussed in Crovella and LeBlanc (1994), any classification scheme should have the 
following properties-

• Completeness. Any source of overhead should be classifiable within the scheme. 
• Orthogonality. No source of overhead should appear in two different categories, unless 

one of the categories is a subset of the other. 
• Meaningfulness. The classification should be meaningful, useful, and widely applica

ble in the context for which it is designed. 

Crovella and LeBlanc acknowledge that their classification scheme is incomplete-we aim 
to produce a complete scheme. Other schemes such as those in Anderson and Lazowska 
{1990) and Martenosi et al. (1992) are also focussed on certain types of overhead. Unlike 
the first two properties, which can be objectively tested, meaningfulness is a subjective 
criterion. There is no one overhead classification scheme which can be said to be correct. 
In order to be able to assess the meaningfulness of our classification scheme, we must 
clearly state the context we have in mind: 

Our primary purpose is to assist the programmer in choosing suitable code mod
ifications to enhance the performance of a program on a given architecture. 

In particular the scheme is not designed to assist the computer architect in modifying the 
hardware so that a given program will run faster. Thus the categories that we choose will 
reflect abstract programming concepts at the highest levels, with hardware features only 
appearing near the leaves of the hierarchy, if at all. By designing our hierarchy in this way, 
architectural differences can be incorporated by relatively minor changes to the scheme, 
making our scheme applicable to a wide range of parallel machines. It is therefore intended 
that ours should be a program-oriented scheme, rather than a hardware-oriented scheme 
such as those described in Burkhart and Millen (1989), Tsuei and Vernon (1990), and to 
some extent in Crovella and LeBlanc (1994) where hardware resource contention is given as 
a primary category of overhead. In the process of performance tuning, a programmer can 
be greatly assisted by the use of performance analysis tools. We believe that a hierarchical 
classification scheme could be usefully employed by such a tool as a means of clearly 
explaining to the programmer the reasons for the temporal and spatial behaviour of the 
program. 

Another property we could have added to our list is measurability. We might like our 
classes of overhead to be easily measurable on a given architecture. However, this property 
tends to conflict with all three properties listed above. In most real systems, not all over
head sources are easily measurable, measurement can result in counting some overheads 
twice, and what is easily measurable may not be meaningful. It is clear that measura
bility is the major criterion which drives the definition and classification of overheads 
for the Cedar system presented in Eigenmann (1993), and that this both restricts the 
meaningfulness and applicability of the classification. We will take the opposite view, in 



www.manaraa.com

210 Part One Research Papers 

the sense that we will avoid measurability as a criterion for defining classes of overheads. 
Nevertheless measurability is an important issue and we will return to it later. 

2 TEMPORAL OVERHEADS 

2.1 Definition 

Before we can proceed to a classification scheme, we need to define what we mean by 
temporal overheads. Intuitively we would like the definition of temporal overheads to 
reflect the difference between the observed execution time of a program and the best 
execution time we could possibly expect if the entire program were parallelisable, and 
parallelism were free. Unfortunately, obtaining a tight lower bound on the execution time 
of a program is normally very difficult, since increasing the number of processors nearly 
always implies increasing the amount offast memory (registers, vector registers or cache) 
available, resulting in the possibility of so-called superlinear speedup (see Helmbold and 
McDowell {19~9)). The complexity of behaviour offast memory (particularly cache) means 
that accurate simulation is the only way to obtain tight bounds on execution time. Thus 
we must accept that this ideal situation is in practice unattainable, and it makes sense 
to compare the observed execution time with a simple estimate of the 'best possible' 
execution time, bearing in mind that it will not in general be a lower bound. The simplest 
estimate we can give is to divide the execution time of a sequential version of the code by 
the number of processors. We define the temporal overhead on p processors OJ as 

oT = T. - r. 
p p p' (1) 

where TP is the observed execution time of the parallel code on p processors, and T, is 
the execution time of the sequential code. Note that we will consider different classes of 
overhead as accounting separately for a certain amount of execution time and hence the 
classes will contribute additively to OJ. This means that they do not contribute multi
plicatively to speedup or efficiency. This property also assists in verifying the completeness 
and orthogonality of a set of overhead measurements for a particular program, since the 
sum of the overheads over all classes should equal the total overhead directly measured 
by the above formulae. For the purposes of this study, we will assume that each processor 
runs a single thread of control. 

Obviously there is the question of which sequential code is used to obtain T,. This choice 
can be left to the programmer, as it will depend on what versions are readily available. 
On one hand, the programmer might wish to use a highly optimised implementation of a 
good sequential algorithm, in which case the overhead will include any algorithmic changes 
introduced to facilitate parallelism. On the other hand it may be more convenient to use 
a one processor version of the parallel code, but the programmer must be aware of the 
overheads that are being ignored by so doing. Frequently it will be some intermediate 
version between these extremes which is used. 

It is tempting to divide overheads into those incurred by going from the best sequen
tial version to a one processor parallel version and those incurred by going from the one 



www.manaraa.com

A hierarchical classification of overheads 211 

processor parallel version to the many processor parallel version. This presents some diffi
culties, however, sinr.e some useful classes of overhead such as synchronisation, scheduling 
and d;:,.to. access may be split between these two classes, whereas they are each better 
understood as a single class. In addition, there are cases where the parallel algorithm 
makes no sense for a single processor. 

There are cases where T. is unobtainable because a single processor does not have access 
to enough memory to run the problem, or else the execution time of the sequential version 
is unacceptably long. In these cases it may be necessary to extrapolate T, from problem 
sizes which can be run, or else to use the approaches described in Crovella and LeBlanc 
(1994) and Hockney (1995), doing the entire overhead analysis on smaller problem size:1, 
and using modelling techniques to extrapolate the results to larger problem sizes. Neither 
approach is very satisfactory, however, as many overhead sources are difficult to model 
using simple functions of program parameters. 

2.2 Classification Scheme 

The main structure of the hierarchical classification scheme is shown in Figure 1. At the 
highest level, we identify four classes of temporal overhead-

TJ Information movement. Overheads associated with the movement of information in 
the system. 

T2 Critical path. Overheads resulting from the critical computation path through the 
parallel program being longer than the ideal. 

T:J Control of parallelism. Overheads resulting from additional code which does not con
tribute directly to the solution of the problem, but serves to manage the parallelism. 

T4 Additional computation. Overheads resulting from changes to the sequential code in 
order to increase parallelism requiring more computation to be executed. 

Information movement 
Information movement can be split into two classes, depending on whether the information 
being moved is data associated with the program, or information about the state of the 
computation-

T1.1 Data accesses. Additional time spent making data accesses. Note that any time 
spent making data accesses which is overlapped with computation is not considered 
as an overhead. 

T 1. 2 Synchronisation. Time spent in performing synchronisation operations. 

The data access overhead can be negative, owing to the increase in the amount of fast 
memory available as the number of processors is increased. Data access overheads can 
themselves be split into classes, according the different possible paths between levels of the 
memory hierarchy, e.g. local memory to local cache, local memory to registers (bypassing 
cache), remote memory to local memory, disk to local memory. The number and nature 
of these classes will depend on the architecture concerned. Note that any changes to 
the code to increase parallelism may result in a different amount of time being spent in 
data accesses, thus contributing to this class. In many parallel programs on distributed 



www.manaraa.com

212 Part One Research Papers 

Temporal 
overheads 

Memory access 

Synchronisation 

Load imbalance 

Replicated work 

Insufficient parallelism 

User scheduling 

Run-time system 

Algorithmic changes 

Figure 1 Classification of temporal overheads. 

level 2 to level I 

level 3 to level 2 

• • . 
level n to level n-1 

Unparallelised code 

Partially parallelised code 

memory machines the greatest contribution to data access overheads will be from the 
remote memory to local memory path. It may prove useful to further subdivide this class
for example to distinguish between latency and bandwidth effects in the interconnection 
network, in message passing architectures to distinguish between read and writes, or in 
virtual shared memory architectures to distinguish between capacity misses and coherency 
misses. In contrast, data access overheads tend to be less significant on true shared memory 
architectures. 

Synchronisation overheads may be subdivided according to the type of synchronisation 
construct being employed. The most commonly used are barriers, locks and events, though 
many other types do exist. It should be stressed that in this classification, synchronisation 
overheads do not include time spent waiting at synchronisation points. This time is 
accounted for by the class T2 (critical path}. 

Critical path 
Critical path overheads arise from imperfect parallelisation of the program. The usual 
effect of this is that processors will be idle, waiting at a synchronisation point for some 
period of time. Another possibility is that many processors may be executing the same 
code, since this may be less expensive that executing it on one processor, and then incur-



www.manaraa.com

A hierarchical classification of overheads 213 

ring data access overheads in distributing the results. We divide the critical path overheads 
into three classes-

T2.1 Load imbalance. Time spent waiting at a synchronisation point, because, although 
there are sufficient parallel tasks, they are asymmetric in the time taken to execute 
them. 

T2.2 Replicated work. Processors are not idle, but are occupied in replicating computation 
which is executed on other processors. 

T2.3 Insufficient parallelism. Processors are idle because there is an insufficient number 
of parallel tasks available for execution at that stage of the program. 

Insufficient parallelism has a variety of causes, giving rise to subdivisions of this class-

T2. 3.1 Unparallelised code. Time spent waiting in sections of code where there is a single 
task, run on a single processor. 

T2.3.2 Partially parallelised code. Time spent waiting in sections of code where there is 
more than one task, but not enough to keep all processors active. 

Unparallelised code can occur because there exist data dependencies preventing its par
allelisation, because it would more costly if it were parallelised, or simply because the 
programmer has not yet addressed the parallelisation of the code section. Partial paral
lelism can arise in a variety of parallel constructs, including fan-in/fan-out operations, 
critical sections, DOACROSS loops and wavefront loops. Note that distributed operat
ing system code is a source of insufficient parallelism overhead, since access to shared 
resources such as page tables and 1/0 channels may be sequentialised. 

Management of parallelism 
This class of overheads arises because code which does not contribute to the generation 
of a solution, but is added to the sequential version to control and manage parallel tasks. 
The time spent in this activity may include executing instructions, data accesses and 
synchronisation, but it is not especially useful to sub-classify in this way. It is more 
meaningful for the programmer to divide it as follows-

T3.1 User scheduling. Time spent in user-written code that controls what parallel tasks 
are executed on which processor and when. 

T3.2 Run-time system. Time spent in run-time system code. 

Additional computation 
In Section 2.1 we allowed the programmer to choose exactly how T. is determined, and 
promised to include overheads resulting from changes to the sequential code in order to 
increase the available parallelism. So far we have accounted for additional data accesses 
arising from this source, but it remains to account for additional computation which may 
result. We sub-classify this overhead according to the level of specification at which the 
changes occur. As discussed in Gurd et al. {1993), levels of specification can be defined 
arbitrarily, so we are free to choose the most useful. We choose (without being rigorous) 
a specification level similar to the 'algorithm' level described in Gurd et al. (1993), which 
states what is to be computed in terms of simple arithmetic operations, basic mathematical 



www.manaraa.com

214 Part One Research Papers 

functions, indexed variables and simple set/logic concepts. Notice that such a description 
contains no information about how data is organised, nor any ordering of computation 
other than that required by the algorithm's data dependency structure. 

We can classify additional computation according to whether it is caused by changes 
above or below this specification level-

T{l Algorithmic changes. Time spent in additional computation, resulting from changes 
at this specification level. 

T4.2 Implementation changes. Time spent in additional computation, resulting from 
changes below this specification level. 

Implementation changes include all the transformations that a restructuring compiler 
might make (loop interchange or fusion, for example), but also transformations that make 
use of some simple mathematical equivalences. 

3 SPATIAL OVERHEADS 

3.1 Definition 

Before we can define spatial overheads, we must define more carefully what we mean by 
memory requirements. We choose the maximum instantaneous memory usage, since 
this the key quantity if there is a hard limit on the amount of memory available. It also has 
no temporal component, thus avoiding any overlap with temporal overheads. We would 
like spatial overheads to represent the difference between the memory requirements of a 
parallel code and those of its sequential counterpart. Our task is somewhat easier than 
for the case of temporal overheads, since the maximum instantaneous memory usage of 
the sequential program M. is a reasonable lower bound on the maximum instantaneous 
memory usage of the parallel program Mp· We can therefore define the spatial overhead o; as 

a;= Mp-M •. (2) 

Once again there is the question of which version we use to measure M,. If we wish to 
consider trade-offs between temporal and spatial overheads, then clearly we should use 
the same code used to measure T.. Otherwise we allow the programmer to make their 
own choice, again bearing in mind that some overheads will not be accounted for if the 
one processor parallel version is used. Again, it is possible to split sequential to one
processor-parallel overheads into a separate class, but similar arguments to those used in 
the temporal case can be applied to justify avoiding this. In situations where M, is not 
measurable, because the sequential code does not have access to enough memory, or will 
run for unacceptably long, it will be necessary to extrapolate M, from smaller problem 
sizes. This is normally a much easier task than extrapolating T., as there is often a simple 
relationship between problem size and memory usage. 



www.manaraa.com

A hierarchical classification of overheads 215 

3.2 Classification scheme 

Figure 2 shows the hierarchical classification scheme for spatial overheads. The primary 

Algorithmic changes 

Implementation changes 

c=J data and instructions c==J data only 

Figure 2 Classification of spatial overheads. 

distinction in spatial overheads is between program data and instructions. However, since 
the subtree for instructions is a subset of the subtree for data, only the classification for 
data is shown, with those nodes which do not apply to instructions indicated. 

At the next level we consider four main types of spatial overhead-

SJ Inflated structures. Additional memory required so that some dimension of a data 
structure is a convenient size. 

S2 Replicated structures. Additional memory required because multiple versions of a data 
structure exist in the parallel code. 

S3 Control structures. Additional memory required for data structures which are added 
to the program to enable the control and management of parallel tasks. 

S4 Alternative structures. Additional memory resulting from changes to the sequential 
code in order to increase parallelism. 

Inflated structures 
Inflation of data structures only occurs in program data and not in instructions. Inflation 
takes a number of forms, but we can distinguish between two subclasses-

SJ.l Declaration. Inflation which occurs because the declared size of the data structure 
in the program has increased. 



www.manaraa.com

216 Part One Research Papers 

51.2 Allocation. Inflation which occurs because memory allocation occurs in pages. 

Declared inflation may occur because shared data structures are constraiued to have 
certain sizes (for example, array dimensions must be powers of two on some systems). 
This effect is also seen on virtual shared memory machines, since a common technique to 
reduce false sharing is to pad the inner dimension of a data structure to the size of the 
coherency unit. 

To understand allocated inflation, note that some space will be wasted on a single 
processor because the size of the data segment will be rounded up to a whole number of 
pages. On multiple processors, however, more memory may be wasted if each processor 
rounds up its segment to a whole number. This effect is compounded by any distinction 
between different types of data, as each type may have its own segment. 

Replicated structures 
Replication of data structures is often the most significant source of spatial overhead in 
parallel programs. We can classify replicated data by the way it is used in the program-

52.1 Copies. Data space that is replicated and used to store copies of data stored elsewhere 
in memory. 

52.2 Private workspace. Data space that is replicated and used to store data values that 
are not replicated anywhere in the system. 

52.3 False replication. Declared data space that is replicated but never used. 

Private workspace replication will occur on any architecture, and is the main source of 
replication on true shared memory machines. Copy replication is normally restricted to 
distributed memory, as its primary function is to avoid memory latency. Communication 
buffers are also a form of copy replication. Replication of instructions is limited to copy 
replication, and false replication. Note that false replication differs from allocated inflation 
in that in the former case the wasted memory corresponds to program variables whereas 
in the latter it does not. False replication occurs frequently in cache-only virtual shared 
memory systems, since space is allocated for a whole page even if the requesting processor 
only requires read access to a single word on that page. It may also occur in distributed 
memory systems when entire data structures are replicated because it is not known at 
compile time what subset of the structure will be accessed by a given processor. 

Control structures 
Control structures can be sub-classified according to the type of control-

53.1 User scheduling. Data and instructions used by user-written code that controls what 
parallel tasks are executed on which processor and when. 

53.2 Synchronisation. Data and instructions associated with synchronisation constructs. 
53.3 Run-time system. Data and instructions associated with the run-time system. 

Control structures are not frequently a major source of overhead, but they can sometimes 
be quite large; arrays of lock variables and arrays that describe task to processor mapping, 
for example. 



www.manaraa.com

A hierarchical classification of overheads 217 

Alternative structures 
This class arises for precisely the same reasons as class T4-we must account for changes 
in memory requirements resulting from changes to the sequential code in order to increase 
the available parallelism. These overheads can be sub-classified in the same way as class 
T4-

S4.1 Algorithmic changes. Additional data and instructions resulting from changes at the 
algorithm specification level. 

S4.2 Implementation changes. Additional data and instructions resulting from changes 
below this specification level. 

It is possible that this class of overheads could be negative, if the changes result in lower 
storage costs but possibly longer (sequential) execution times. 

4 MEASUREMENT 

4.1 Temporal overheads 

The most obvious requirement for measurement of temporal overheads is a direct conse
quence of the definition we have used: it is necessary to analyse the performance of both 
the parallel and sequential version of the code, and, to enable overhead localisation, to 
be able to correlate the corresponding regions of the code in the two versions. This is 
relatively easy to do at the subprogram level, but at a lower level may require explicit 
marking of basic code blocks. 

Accurate measurement of temporal overheads imposes a number of requirements on 
hardware. At the very least each processor must have a high-resolution clock which can 
be read very cheaply. To record memory access times, hardware support is required for 
logging and timing misses in all the levels of the memory hierarchy, since most memory 
operations arc too fine-grained to be measured in software. 

Since both critical path and information movement overheads are often characterised 
by the CPU idling (or spin-waiting), it can be difficult to distinguish between the two. In 
a message-passing environment, the cost of communication between processors requires 
co-operation between the sending and receiving processes. The receiving process can time 
how long is spent in a blocking receive, but without knowing the time at which the 
message is sent, it cannot distinguish as to whether this is time is waiting for the message 
to arrive (memory access overhead), or waiting for the sending processor to finish some 
computation (load imbalance overhead). It is therefore necessary to have the send time 
available, either at run-time if statistics are being accumulated, or from any trace which is 
used for post run-time analysis. Some method of synchronising clocks between processors 
is also required. 

Measuring synchronisation overheads poses some similar difficulties. A processor re
questing a lock can tell how long it takes to acquire a lock, but it cannot divide this time 
into time spent waiting for the lock to be released by another processor (partially paral
lelised code overhead) and the time to transfer the lock (lock synchronisation overhead). 

Control of parallelism, additional computation and replicated work overheads can only 



www.manaraa.com

218 Part One Research Papers 

be identified by their program context. This is easy if the code responsible is packaged 
into subprograms (a run-time library for example), but much more difficult if the code 
is inlined. Again, some marking of code blocks may be required. The ability to count 
instructions (either in hardware or software) can also be of assistance here. 

4.2 Spatial overheads 

Measuring spatial overheads is significantly more difficult than measuring temporal over· 
heads, since determining the amount of memory used by a program, especially in a virtual 
memory system, is in general harder than measuring the program's execution time. This 
may account for the general lack of memory statistics available from performance analysis 
tools. 

Distinguishing between data and instructions, or between private and shared data is 
straightforward, since they occupy different segments of memory. Partial information 
about spatial overheads can be obtained by examining the size of statically declared 
data structures and tracking dynamic memory allocation-this will normally give an ac
curate picture of control structure overheads, for example. This approach will be in error, 
however, if structures are declared (or allocated) but not used in their entirety. Auto
matically tracking use of memory is not straightforward, but the programmer will often 
have available some knowledge of array access patterns which allows a good estimate of 
spatial overheads to be made. In contrast to temporal overheads, rough estimates may be 
adequate to allow the programmer to make the appropriate modifications to the code to 
sufficiently reduce spatial overheads. Usage of memory at the page level can be monitored 
by the operating system, by keeping track of page faults, but deciding which structures 
are being accessed either requires the use of symbol table information, or the use of dif
ferent memory segments for different data structures. The problem is especially difficult 
in a virtual shared memory system, where multiple copies of pages can exist. Obtaining 
information about usage of memory at a lower level (e.g. how many words on a page are 
actually accessed) can only be achieved via address tracing which may be impractical for 
large programs. Distinguishing between copy overheads and false replication in a virtual 
shared memory system is an example of such a problem. 

5 CONCLUSIONS AND FUTURE WORK 

We have presented hierarchical classification schemes for both temporal and spatial over
heads in parallel programs. Since the classification hac; been motivated by meaningfulness 
and usefulness for a programmer, we hope that the schemes will form a useful framework 
in which overheads can be analysed on a wide variety of parallel architectures. 

Prototypes of the temporal scheme have already been used in the development of parallel 
programs (see Egan et al. (1994) and Falco Korn et al. (1995) for examples), and it is 
intended to utilise the full schemes in future porting exercises, incorporating them into a 
general methodology for parallel program development. It is also intended that this type 
of framework be 2xtended to multi-threaded architectures, which we specifically excluded 
here. 



www.manaraa.com

A hierarchical classification of overheads 219 

REFERENCES 

Anderson, T.E. and Lazowska, E.D. (1990) Quartz: a tool for tuning parallel program per
formance, in Proceedings of ACM SIGMETRICS Conf on Measurement and Modeling 
of Computer Systems, 115-125. 

Burkhart, H. and Millen, R. (1989) Performance-measurement tools in a multiprocessor 
environment. IEEE Trans. on Computers, 38(5), 725-737. 

Crovella, M.E. and LeBlanc, T.J. (1994) Parallel performance prediction using lost cycles 
analysis, in Proceedings of Supercomputing '94, IEEE Computer Society. 

Egan G.K., Riley, G.D. and Bull, J.M. (1994) Parallelisation of the SDEM distinct ele
ment stress analysis code on the KSR-1. Proceedings of ACM International Conf on 
Supercomputing, 85-92. 

Eigenmann, R. (1993) Toward a methodology of optimizing programs for high performance 
computers. Proceedings of ACM International Conference on Supercomputing, 27-36. 

Falco Korn C., Bull J.M., Riley G.D. and Stansby P.K., (1995) Parallelisation of a three
dimensional shallow water estuary model on the KSR-1. Scientific Programming, 4(3), 
155-170. 

Gurd, J.R., Cooper M.D., Hedayat G.A., Nisbet, A., O'Boyle, M.F.P., Snelling D.F. and 
Bohm, A.P.W. (1993) A framework for experimental analysis of parallel computing. 
Uni·IJersity of Manchester Department of Computer Science Technical Report UMCS-
93-2-3, University of Manchester, UK. 

Helmbold, D.P. and McDowell, C.E. (1989) Modeling speedup(n) greater than n, in Pro
ceedings of 1989 Int. Conf on Parallel Processing, Pennsylvania State Univ. Press, 
III-219-III-225. 

Hockney, R.W. (1995) Computational similarity. To appear in Concurrency: Practice and 
Experience. 

Martenosi, M., Gupta, A. and Anderson, T. (1992) MemSpy: analyzing memory system 
bottlenecks in programs, in Proceedings of ACM SIGMETRICS Conf on Measurement 
and Modeling of Computer Systems, 1-12. 

Tsuei, T.-F. and Vernon, M.K. {1990) Diagnosing parallel program speedup limitations 
using resource contention models, in Proceedings of 1990 Int. Conf on Parallel Pro
cessing, Pennsylvania State Univ. Press, 1-185-1-189. 

Vrsalovic, D., Siewiorek, D.P., Segal, z.z. and Gehringer, E.F. (1988) Performance predic
tion and calibration for a class of multiprocessor systems. IEEE Trans. on Computers 
37, 1353-1365. 

BIOGRAPHY 

Mark Bull received the M.A. degree in Mathematics from the University of Cambridge, 
and the M.Sc. degree in Numerical Analysis from the University of Manchester. He is cur
rentiy a Research Associate in the Centre for Novel Computing within the Department of 
Computer Science at the University of Manchester. His main research interests are in the 
design and implementation of parallel numerical algorithms and in parallel programming 
techniques and methodology, particularly for virtual shared memory architectures. Pre
viously he worked as a researcher in atmospheric boundary layer simulatiott at the UK 
Meteorological Office. 



www.manaraa.com

19 
Periodicity in an asynchronous 
algorithm for parallel processing 

L. R. Fletcher and M. Santini 
Department of Mathematics and Computer Science 
Uni,versity of Salford 
Salford, Lancashire M5 4 WT, United Kingdom 
Tel: +44 {0) 161 745 5406, Fax: +44 (OJ 161 745 5559 
e-mail: L.R.Fletcher@mcs.salford.ac.uk, M.Santini@mcs.salford.ac.uk 

Abstract 
We consider asynchronous iterative algorithms for distributed processes in networks in 

which tlw computations at teach node are allocated to a fixed process. Each process begins 
a uew iteration when it has received new values from a 'sufficient' number of the process•,g 
to which it is adjacent in the dependency graph. For each process different 'sufficient' 
nitteria might be chosen; for example at least 'one', a given subset or 'all' the adjacent 
pnwesstes. Each process uses only the most up-to-date of the values it has received, 
discarding any earlier values. We assume that each process performs an iteration in its 
uwu coustant commtensurable tinw and to each channel corresponds a fixed communication 
dday. 

We show that the behaviour of the processes in the overall network is predictable 
as each process computes periodically. Moreover, if the dependency graph is strongly 
connPcted and 'sufficient' means 'all' the adjacent processes, the computation rate is the 
sanw for each process and there emerges a calculable formula for this rate. Thus tlw 
al)!;orithm becomes implicitly synchronous and its performance can be evaluated. 

Keywords 
Asynchronous algorithms, parallel processing, distributed processes, dynamic \)f'haviour, 

1\ -pPriodicity, pPrfonnance, Petri net, timed Petri nd 

1 INTRODUCTION 

We consider iterative algorithms of the form 



www.manaraa.com

Periodicity in an asynchronous algorithm for parallel processing 221 

wh«>rt' x = (xh x 2, ... , x,.) is a vector in ~" and f : !R" ---+ !R" is an iteration mapping 
defining the algorithm. These algorithms can be executed on a parallel or distrihutt>d 
computing system in which the i-th process Q; updates x; according to the formula 

We will need to be specific about comnmnication links between processes so we defin«> 
subst<ts I~,I2 , ••• ,I,,~ {1,2, ... ,n} by 

j E I; <=> J; depends on Xj, j # i. 

Th«> df:prndcncy graph 9 is the directed graph with n vertices, labelled 1, 2, ... , n, 
with the directed edge (i,j) present if and only if j E I;. We will assume that thf' 
communication network between the processes is isomorphic to the dependency graph 
and that each process Q; is aware of the current value of x;. 

We focus here on an asynchronous implementation, in which each process computes at 
its own pace while receiving information on the values of the components updated by the 
otlwr processes. Descriptions of asynchronous iterations have been presented by difft<rent 
authors including (Baudet 1978) and (Bertsekas and Tsitsiklis 1991}. We will work with 
a slightly modified version of Bertsekas's formulation. 

Write I; = { i1 , i 2, ••. , io;}, i = 1, 2, ... , n, where I; is the communication sd to Q i 
.J.,fint<d above. Let x;(O) be the value of x;, nesiding in the m~emory of the i-th proct<ss 
at tim~e 8, where 8 is a natural number. According to (Bertsekas and Tsitsiklis 1991) tlw 
asynchronous v~ersion of the iterative procedure is given by 

{ x;(8)=J;(:z:;1(r/(8)), ... ,:rdr/ (8))), 
1 I <'Iii 

J:;(8)=x;(8 -1) 
if(} E f)i 

otherwis~e 

wlwrf' tlw schedule E-)i is th~e set of times at which x; is updated (that is, CJ; finisht<s a 
computation} and rj(O) are times satisfying 

II::; rj(O) ::; 8- 1, for all 8 2 1. 

At time 8, Xj(rj(O)) is the last value computed by Qj that Q; has received. We chose 
not to include i in /; to simplify the notation. If J; depends on x; then the reader will 
t<asily verify that none of the results is affected, as process i is always awane of thf' CUITPnt 
valuf' of :z:;. 

We assume that each process Q;, i = 1, 2, ... , n satisfies the following communication 
rnlt<. As soon as a process CJ; finishes a computation it sends its result x; to th«> Qj which 



www.manaraa.com

222 Part One Research Papers 

nPted it, according to the dependency graph. Q; carriPs out a nPw itPration as soon as a 
'snfficiPnt' number of updatPd component values have been received from ot.lwr procPss<·s. 
WP dPtJOtP by 1i; <;; '2 1• the 'sufficitent' set of subsets of indicPs of val uPs (or proctesstes ). 
As soon as Q; has received enough new values whose indices make up an denwnt of 1i;, 
procPss CJ; comnwnces a new iteration. It is natural to require that, when this occurs, Q; 
nstes tlw most recently rPcPiw'<l vahw of tevery variahlP. Hem·p WP imposP thP condition 

HE 1i; L E H; for every L such that H <;; L <;; I; (I) 

and rtequirte that procPss Q; re-starts with tlw biggPst rlPnJPnt of H; availablte. If two 
PIPmPnts of H; arte availablP at thP same timP, by (I) their union is also an Pltenwnt of H; 
and then chosen for the new romputation. We discuss now a few particular cases of H;. 

• If 'sufficient' nwans 'all' for each proctess, Q; rP-computes as soon as it has rPcPiv<>d 
a nPW value from Pach of the processes Q,, h E /;. H; has got a singlte dtemPnt, 
H; = {/;}. We analysed this case in detail in an earlier paper (Fletcher and Santini 
1994). 

• If 'sufficient' nwans 'one' for each process, without any particular requirement about 
which one, Q; re-starts with any number of new values. So Q; stays idlt• only if 
it received no communications since it began the previous iteration. In this casP 
H; = '21·. 

• If 'sufficient' nwans that Q; re-computes x; only when it has ren•ived updatPd values 
from :r, for hE H; <;; 1; then H; = { H; U I I I E 2/,-H, }. 

Aft...,r each itPration Q; picks up the most recPnt values availablP, and waits if tWCPssary 
for oth<'r values depending on the criterion chosen. If, by the time it re-starts, morte than 
otw value from the same proress has arrived, it usrs only the latest valtw and discards 
tlw IHPvious ones. Thus one process Q; will buffer no more than Card H; values at each 
it.Prat.ion, that is, no more than one value per process it is supposed to receive from. The 
n·-starting rule can be decomposed in three ordered subrules. 

I. Each process re-starts as soon as the criterion is satisfied; 

'2. With all the new values available; 

:t With the most up-to-date of those new values. 

In any case {J; may have to wait a certain period of time before re-computing, and it 
is morP likely to be idlP with the smaller the set H; is, the extreme case being H; = {/;}. 
At tlw otlwr extreme, if H; = 21' then the amount of asynchronism is more significant 
and the idle time of the processes is reduced. 

We cau consider the receiving rule as a local synchronisation, whereas the sending of a 
nwssagP does not imply any synchronisation (the receiving process can be in a computing 
statP ). As soon as Q; finislws an itPration, it becomes aware of the values received wlwn it. 



www.manaraa.com

Periodicity in an asynchronous algorithm for parallel processing 223 

was computing. WP. assume that the communication system is reliable {messagP.s nP-ithP.r 
lost nor corruptP.d nor desequenced) so the valuP.s arP. definitP-ly rP.ceiwd aftP.r bP.ing sP-nt. 

In ordl"'r to have a dl"'ar picture of thf' procP.sses' behaviour, we make tlw following 
assumptions. 

I. The dependi"'IKY graph of the proct-'sses is COlllii"'ctl"'d. 

:l. At timP. () = 0 all thl"' proct-'SSP.S art-' providt-'d with thl"' initial valul"' of thP. components 
of x thP.y nP.I"'d, according to thl"' dt-'pendt-'ncy graph causing them to commP.nct-' their 
computation. We shall say that each process is launched. 

:3. Each Q; computes in its own speed and thP. computation tim!"' d; of Q; is thl"' same 
at all itP.rations. It is convenient to asstunP. that thesP. processing timP.s art-' com
mP.nsurable. 

4. We denote by d;j the time required to send a value in the channel linking Q; to Qj. 
We assume that thP. d;j are constant and commensurable. As soon as Q; finishP.s a 
computation, it SP.nds its rP.sult to the Q.i which neP.d it, according to thf' dependP.ncy 
graph. The Qj receivP. it d;j units of time later. 

Such an algorithm will be called in the following a WS(Weakly Synchronized)-algorithm. 
The justification of the 'WS-algorithm' terminology lies in Theorem 1 wlwre we show that 
from thl"' local synchronisation emerges behaviour which mimics a globally synchronised 
algorithm. Therefore the behaviour of the processes is predictable rather than chaotic. 

Theorem 1 states that the processes computP. cyclically after a transient initial phase. 
In section 2 we give thP. main stP.ps of thP. proof of Theorem 1 whert-' the WS-algorithm 
is modi"' led by a timed priority system {timed Petri net with priorities) with thl"' same 
dynamic behaviour. Section :3 deals with thl"' particular criterion 'all', that is 'H.; = {/;}. 
We refl"'r to (Carlier, Chretienne and Girault 1985) to show that the same computatiou 
rat<" <"merges for each process, and give a calculable formula. Section 4 gives one example. 

Related issues arise in the analysis of temporal properties of parallel compositions 
of omega-automata (Alur, Itai, Kurshan and Yannakakis 1995) and protocol analysis 
and verification (Aggarwal, Barbara and Meth 1987). However our work is motivatP.d 
towards the analysis of asynchronous implementations of numerical algorithms and tlwir 
performance, in relation to convergence for example (Bull and Freeman 1992). 

2 BEHAVIOUR OF A WS-ALGORITHM 

2.1 Definition of /{-periodicity 

Tlw type of periodicity we are concerned with is called /{-periodicity and was intro
duced by { Chretienne 198:3). A schedule is a sP.quence whose elements arP. time occurencP.s. 
Intuitively a schedule is I< -periodic if the I< succesivP. time occurences repeat periodically. 



www.manaraa.com

224 Part One Research Papers 

~~n+2K 

Figure 1. Example of a /{-periodic sequence. 

Mort' formally we haw tlw following definition in (Carlier and Chretieuiw 19K~). 

Definition 1 A Mq'UfnCf { .s,.}' ·'n E z+' is /{ -pn·iodic, with pt:riod 7r' if then' fXists an 
intfgcr· n 0 such that 

fo1· all n :;:: n0 , .sn+K = .s,. + 1r 

whrn /{ E z+ is tht fJfT"iodicity facto7·, 7r thr fJfTiod, and /{ /7r tht' jrfquwcy of { -'n}. 

2.2 K -periodicity in a WS-algorithm 

In this section we show that after a transient phase each process in a WS-algorithm 
wmputes periodically. Thus the behaviour of each proCf'8S - when it will be performing 
and when it will he idle- is predictable. This result is expressed in Theorem I for which 
wt· giw an outline proof; full details appear in (Fletcher and Santini 1995). 

Theorem 1 For each f!1'0C£'S-' QJ in an WS-alg01·ithm tht'f'f' is a l<j such that Q.i computes 

under a Ki -periodic .schfdulf. 

l'mof. 
The proof li"s in tlw muddling of the WS-algorithm hy a timt:d prior·dy systnn, that 

is a timed Petri net with priorities (Best and Kontny 1992). Tlw tinwd J.niority ~ystem 
bas properties which apply to the underlying WS-algorithm to prove thP theorem. In the 
following we shall assume that the reader is already familiar with Petri nets; we refer to 
( M mat a 1989) for concepts and definitions relating to Petri nets. 

H ... cause each process computes for a fixed amount of time, it is natural to model one 
pruc ... ss of computing delay d; hy ad; timed transition, the transition firing meaning that 
tlw proc ... ss is computing. With any non-zero communication delay djk will be a~sociat ... d 
a tinwd transition of dnration djk· A new value n~ceived is symbolised by a token in tlw 
input. place; the exchange of data is represent .. d by the token traffic. 

Such a Petri net structurP is analogous to the dependency graph of the processes. 
How ... ver, we are considering processes pt>rforming several tasks: computing, rPceiving, 
discarding and sending. Therefore we need a more elaborate Petri net model in which 
some new elements are added to the model of each process. 

!. A process is mw agent and cannot compute two values at the same time, wher<>a~ 
a timed tran~ition can initiatP a nPw firing evt>n if it has not tPrminated tlw pr<>
vious on<>. Thus, to modi'! a procPss we want two firings of thP associated tinwd 
transition not to owrla]J. To achievP this, with Pach timed transition we associat ... 
a single place loo]J. 



www.manaraa.com

Periodicity in an asynchronous algorithm for parallel processing 225 

:l. In tht> WS-algorithm valut>s art> somf'timt>s discardt>d. This happens when two val
Ut<S of x; (or more) from Q; art> available at one process Q3. Proet<ss Q3 picks up 
only the last ont>, which is supposed to be the most up-to-datP. In t«>rms of Pt>tri 
nt<ts wt> intP-rpret it as two tokt>ns availabl«> in onP- place. OnP- has to lw rP-movt>d so 
wt> add transition and arcs to rt>movt> thP- t>Xtra tokP-ns. 

a. As Petri nets model conditions it is possiblt> to model the re-starting eritt>rion by 
adding plact>s, transitions and ares within the model of ont> singlP- pmct>ss. Thus 
tht> model will be different for different criteria. Those extra Pt>tri nd ft>atures 
bring unwantt>d conflicts in the structure. Which transition is going to firt> if two 
art> enabled at the sanw time"? To keep a deterministic system, t>ven if it is not 
stmcturally conflict free, a priority relation is introduced for the transitions of each 
subnet modt>l of a process, resulting in a timed priority system. 

4. Tht> initial marking corresponds to tht> launching of the processes. The nt>t without 
tokens is like the nt>twork with all the processt>s dead. As soon as tht> initial tokt>ns 
art> put in the net, the transitions start firing, according to the rult> 'fire a transition 
as soon as it is t>nahled'. The dynamic behaviour of the Petri net will model tht> 
bt>ha.viour of the processes (idlt> or performing) in tht> WS-algorithm. 

Ht·m.m·k. Thost> t>xtra. Pt>tri net elt>ments art> only added inside the subnet model of 
t>ach singlt> proct>ss. This is nt>cessary to keep a fully dt>centralised system of processt>s, 
without any t>Xtrant>ous interactions betwt>en the processes. 

We have constructed a marked timed priority system whose transitions firt> as soon as 
they art> t>nahlt>d and whose Petri net is hounded (Fletcher and Santini 1995). Moreover, 
a.ftP.r a. certain time - depending on the topology of the nP.twork, the computation and 
communication times and the manner in which the overall process is launched - this Pt<tri 
nPt has the same dynamic behaviour the live suhnP.t of the original Pt>tri net model. Tlwn, 
using properties of the new live hounded timed priority system, WP. can derive a. theort<m 
showing that the timP.s at which each transition begins to firP. is a K -periodic schedult>. 
Tht<u WP can transfer these results to the WS-algorithm and prove ThP.orP.m l. 

I Ising BP.rtseka.s formulation ThP.orem l can ht> re-statP.d. 

Corollary 1 There rxists a timt· 90 and integers 1r, Kj, a}, ... , af', j 
that .fm· all 9 2 9o, 

(-)i =a~ mod 1r, l E {1, ... , K3} 

·whn·f" 1r is thr prr·iod and Kj the periodicity factor· of proct:ss j. 

1, ... , n ~-uch 



www.manaraa.com

226 Part One Research Papers 

;3 CRITERION 'ALL': EVALUATION OF THE PERFORMANCE 

VliP focus herP on tlw particular criterion 'all', that is H:i = lj for all j = !, ... , n. For 
procPssPs in a strongly connPctPd rwtwork we show that 

and dterive a formula for tlw computation rate f = I<j1r. 

Theorem 2 C:onsidrr a WS-algorithm in a st·rongly connrctrd nrtwo·rk computing undn· 
flu criterion 'all'. Then each process computes under a I< -pt:riodic schrdult· and tht· com.
pulalion mtr f is tlu·n gi'llcn by the formula 

.!. . { l . #{Processes in Ck} - #{Values discarded in Ck}} = llllllk --, ' dmax Total delay in C k 

wfl.tTf d,.,.x is the largest computation time for any process in the ndwork and (71, ... , ('I 
an t/~,~ simple circuits of the graph. 

/'roof. 
A fully df>tailted proof of Theorem 2 is giwn Plstewhen• (Fletcher and Santini 1994, 

!9!J!i ). W<' devt>lop herP the important stteps. 
Wte rtefter to (Carl iter, ChrPtitennP and Girault 1 !JI:I!i) whPrP tlwy dterive a tlworPm for 

what tlwy call the earlitest controlled execution of a Petri net. Most importantly tlwy 
giv<> a formula calculating the frequency of the firings of each transition, having shown 
alneady that those firings are I< -periodic. The earliest controlled execution is a particular 
••xecntion of the firings of a Petri net, which for the subclass of Petri nets called timfd 
1narktd graph follows the rule: 'Fire a transition as soon as enabled'. Firing as soon 
as •·nabled is one rP-quirement of our timed priority system model of the WS-algorithm. 
lloW<'VPr our Pdri net model is gpnerally not a timed marked graph. 

With criterion 'all' there exists a time ()0 such that, for all() greater than 00 , the timed 
!'t•t.ri net model of the WS-algorithm is equivalent to a timed marked graph. In fact, 
the livP subnet emerges as a timed marked graph. As there are no conflicts in a marked 
graph, the priority relation is no longer necessary. 

Within the transient phase values may have been discarded so the initial marking of 
the Petri net may not be reachable from the marking at Ba. To use the theorem from 
(Carlier ff a! 198!i) we need the marking at 80 . In termsofthe WS-algorithm this requires 
the algorithm to be run up to time 80 to find out where values are discarded. With the 
pill'ticnlar criterion 'all' no values are discarded after the transient time has elapsed. 

As th<> formula only works for strongly connected timed marked graphs, we restrict 
onrsP!vP.s to strongly conn<>cted networks of processes. Then we can apply the theorem 
from (Carlierft al 198!i) to our timed Petri n<>t model of a WS-algorithm and prove 
Theorem 2. 



www.manaraa.com

Periodicity in an asynchronous algorithm for parallel processing 227 

This tlwonem givte~ thte texact computation ratte, but wte nteed to run thte algorithm 
11p to tlw stteady statte. Wte can gd an uppter hound for the computation rat•· with tlw 
following obvious consequencte of our tearlier result. 

Corollary 2 C:onsidrr a WS-algor·ithm in a strongly connected network computing undf"'l" 
thf critf-rion 'all'. The computation rate f of thf· algorithm in its steady statr satisjif s 

. . { I #{ ProcrsMs in Ck}} I < mmk --, . , 
· - dmax Total delay zn Ck 

wlu·n d,.,.2, is thr largrst computation time for any process in the network and(\, ... , C:1 
arr tlu· simple cin·uits of the gmph. 

Wte now uste Bertstekas formulation of the WS-algorithm, to re-state the above rtesults. 

Corollary 3 There exists a time 80 and the displacement times a/, . .. , af, i = I, ... , n 
such that for all 8 2: Oo, 

(-)'=~~~mod 7!", l E {1, ... , I<}. 

/\. and 7T" arc thf· smallest integf'1"S such that .f = I</ 7T", f dfjinrd as in Thmrem. 2. 

Htencte tlw srhtedulte { (-);10 2: 80 }, i = I, ... , n is texactly prtedictahlte if thte algorithm is nlll 

up to 80 . As soon as the stteady state is establishted each process computes I< tinws iu a 
]Wriod and the algorithm becomes synchronous. 

4 EXAMPLE 

w.., consider the strongly connected ntetwork of four processes illustrated in Figurte :!. 
l'rocess (lz is tlw only process of tlw graph receiving data from more than one othter pro
<"<'ss. Although our analysis applites to any criterion satisfying ( 1 ), here we discuss the cases 

H2 = {(1),(4),(1,4)}, 
H2 = {(1,4)}. 

With H 2 = {(1,4)}, that is criterion 'all', we apply Theorem 2 in order to calculat<e 
tlw computation rate. Wte label the two circuits C:1 and C2 where C\ = { Q), Q2, Q:h Q4 }, 

c:2 = { CJ2, Q:h Q4}. The numbers of processes in C1 and C'2 are 4 and :l resptectively. 
From Theorem 2 it follows that the processes are firing periodically after a transient 

phase, with thte computation rate 

(- . {~ (4-#{DiscardsinC\}) (:l-#{DiscardsinC'2 })} 
.-mlll 6' l!'i ' 9 . 



www.manaraa.com

228 Part One Research Papers 

WP JHPst>nt in Figurt> :~ an t>Xamplt> of tlw Pt>tri nf't modt>l Wf' havt> dt>vt>lorwd. As 
couflicts occur, tlw modt>l of t>ach pruct>ss is a priority systt>m. Tlw difft>rt>nt critt>ria for 
Jn·oct>ss Ch art> exprt>sst>d in the differt>nt modds for process Q2 (see Figurf' 4 and Fi!!;lll"f' 
fi). 

Fi!!;llff' 6 and Figure 7 represent the computing and idle times of thte proct>sst>s. A 
vahw disr.ardted is symbolist>d hy a crossted arrow, the abscissa of the vtector corrt>sponding 
to tlw stending timf'. 

Q2(:3) 
(I) 

(2) 

(1) Qa(2) QJ(6) 

(0) 

(0) 
Q4(1) 

Figure 2. An texamplt> of four processes in a strongly connt>ded network. Tlw numlwrs 
in hrackt>ts art> tlw •~onstant computation or communication tinws. 



www.manaraa.com

Periodicity in an asynchronous algorithm for parallel processing 229 

I 

I 

t\4l(o): 

l'.xocess_Q3- _ 

_p_xocess...Q~ 

Figure 3. Pi"tri net model of the example network at fJ = 0. Transition t\41 has priority 
of firing over t1 when they are enabled at thP. same timP.. 

Figure 4. ThP. model of process Q2 when 
the criterion is 1-£2 = {(1,4)}. Process 
Ch re-starts only aftP.r recP.iving new val
ues from both process 1 and process 4 -
the criterion 'all'. 

rrocess- Qz- - - - -~-- - - - - - - - - -; 
I • I 
I I 
I e I : ptf{O) : 
I I 

: t2{3) • : 
I I 

~-----------------------· 

Figure 5. The model of process Q2 when 
thP.criterionis'H.2 = {(1),(4),(1,4)}. Pro
cess Q2 re-starts when at least one new 
value is n'>ceivP.d- the criterion 'one'. 



www.manaraa.com

230 Part One Research Papers 

0 6 12 1R time units 

Figure 6. 1i2 = {(1), (4), (1,4)}. Process 
Ch rtestarts with at )<east one new value. 
Tlw gPnteral period is 1r = 6 but the com
putation rates are different so that I<t = 1 
and I<2 = /{3 = /{4 = 2. xi1l is periodi
.. ally discarded in Ct. 

G CONCLUSION 

t --
0 

i~~~ 

l l i ~ ! ~ 

6 12 

!~ 
l 
!~ 

!~ 

l 
!~ 

11-! time units 

Figure 7. H 2 = {(1,4)}, that is cri
terion 'all'. xi1> is discarded once in C'1 
and c:2· 711 = 4, n2 = :3 and .f = 

. { 1 (3-l) .!.!=!1} - I Tl .. l I I .. nun 6• 9 , 15 - 6. 1esc.1ecue1~ 

1-penodir. with 1r = 6. 

w .. hav<> developed a Petri net model for a class of asynchronous distributed itterative 
algorithms in which a given processor computes one component of the iterate vector. Each 
of tlws<> processors computes a new iterate as soon as new values of a certain number of 
thte component:; it rtequires are received from other processors. Using the Petri nP.t model 
wte havP shown that, after a certain initial time has elapsed, the computations all become 
periodic, and, implicitly, synchronized. For a strongly connected net and when a process 
rtequires new values from all the adjacent processors in the dependency graph we have 
given an <exact formula for the period. However, this can only be evaluated once the 
lwha.viour of the algorithm during the initial phase is known so we also give an upper 
hound for the period which can be computed at the outset. Further work is under way 
to dPrive an upper bound for the period when more general criteria are used. 

G REFERENCES 

Aggarwal, S., Barbara, D. and Meth, K.Z. {1987) Spanner- A tool for the specification, 
analysis and evaluation of protocols. IEEE Transactions on Software EnginnTin_q, 
13, 1218-12:37. 

Alnr, R.., ltai, A., Kurshan, R.P. and Yannakakis, M. (1995) Timing verifiation by suc
c<essive approximation. Information and Computation, 118, 142-157. 

Baudet, G.M. (1978) Asynchronous methods for multiprocessors. Journal of the Asso
ciation for Computing Machinery, 25, 226-244. 

Bertstekas, D.P. and Tsitsiklis, .J.N. (1991) Some Aspects of Parallel and Distributed 
ltterative Algorithms- A Survey. Automatica, 27, :J-21. 



www.manaraa.com

Periodicity in an asynchronous algorithm for parallel processing 231 

Ht>st, E. and Koutny, M. (1992) Petri net semantics of priority systems. Thmr·rtical 
C:omputt:r Scif!tct:, 96, 175-215. 

Bull, .J.M. and Fret'man, T.l. (1992) Numerical performance of an asynchronous .Jacobi 
iterations. Lt:durt:$ Nott:s in Computt:r Scirnce 634, :161-:366. 

Carlit>r, .J., Chretienne, P. and Girault, C. ( 1985) Modelling scheduling problt"ms with 
timt"d P~'>tri nets. Advancrs in Petri Nets, APN '84 (ed. G. Ros~'>nherg), Lecture 
Nott:.s in Computt:r Science 189, 62-82. 

Carlit>r, .J. and Chr~'>tienne, P. (1988) Timed Petri nets schedul~'>s. Ad11anccs in Petr·i 
Nets, APN '88 (ed. G. Rosenberg), Lt:durr. Notes in Computt-r Sciencr 340, 62-·H4. 

Chn·til"nne, P. (19H:3) Les reseaux de Petri temporises. Thest> d'Etat, Univt>r~itt> dt> Paris 
VI. 

Fl...tdl~'>r, L.R. and Santini, M. (1994) Periodicity in an asynchronous algorithm for par
allel processing using timed Petri nets. Procrrdings of tht: HKIWNDCM .94, Hong 
Kong. 

Fl..tdwr, L.R. and Santini, M. (1995) Periodicity in an asynchronous algorithm for paral-
11"1 processing using timed Petri nets- Detailed results and proofs. Technical rrport, 
MC7S-.9.5-18, Univt"rsity of Salford. 

Murata, T. (19H9) Petri Nets: properties, analysis and application. Proc. IEEE, 77, 
541-51:10. 

7 BIOGRAPHY 

Lt>slie Fletcher is Head of the Department of Mathematics and Computer Science at 
tlw University of Salford. He holds a B. Sc. degree in Mathematics from the University of 
Mancht>ster and a D. Phil. degree from the University of Oxford. He has published pap~'>rs 
iu many areas of matlwmatics and its applications in engineering, finance and medicine. 
His current research interests include the modelling and control of decentralised systt"ms, 
from both theoretical and practical standpoints. 

Marit> Santini is a doctoral student at the University of Salford. She holds a Diplome 
d'ingPuieur from the Ecole Centrale de Lyon. She is currently researching in the area of 
parallel processing. 



www.manaraa.com

20 
Performance indices to characterise concurrent applications: 

experimenting GSPN evaluation techniques in plant automation 

Oliver Botti 
ENEL Societa per Azioni 

Centro Rice rca di Automatica ( CRA) 

Lorenzo Capra 

Via Volta 1, Cologno 20093 Milano (ITALY) 
e-mail: botti@cra.enel.it 

Universita degli Studi di Milano 
Dipartimento di Scienze dell'/nformazione 

Via Comelico 39- Milano (ITALY) 
e-mail: petrilab@hermes.mc.dsi.unimi.it 

fax. ++2.5500.6276 fax. ++2.7224.5525 

Abstract 
This work is part of an investigation aiming at experimenting the use of Generalised Stochastic 
Petri Nets to model and to evaluate concurrent applications over their target parallel 
architectures. Former work proposed a modular methodology integrating the modelling and the 
performance evaluation of both sw applications and hw architectures. Its experimentation over 
real case studies pointed out the need to deepen some specific steps of model construction and 
analysis. We here collect the main considerations emerged during the experimentation activity. 
In particular, we discuss the experienced performance metrics and parameter assignment 
criteria; then we focus on the definition and use of a set of quantification indices, which have 
revealed to be suitable to characterise an application in terms of its performance and to support 
its mapping over a parallel architecture. A portion of a case study taken from ENEL R&D 
activity in power plant automation is used to show the usefulness, efficacy and expressiveness 
of the above novelties. Guided by the needs of the industrial final user to which the 
methodology is oriented, keywords of the whole work have been simplicity of use and 
flexibility, aiming at increasing practicability and (re)usability in a wide applicative area. 

Keywords 
GSPN, Process-Box, concurrent applications, performance prediction, performance indices. 

1 INTRODUCTION 

The strong performance and fault-tolerance requirements imposed by modern automation 
systems and the parallel and distributed solutions proposed to cope with them point out the 
central role now played by the design and performance evaluation activities during the system 
life-cycle. In particular, it reveals to be necessary to integrate performance evaluation since the 
early design phases. With the aim of allowing a performance oriented parallel system design, a 
modular methodology based on Petri Nets (PN) was proposed in Botti and De Cindio (1993) 
integrating modelling and performance evaluation of both sw applications and hw architectures. 
The interest in PN is due to many reasons: they are a formal model suitable to deal with the 
several issues of concurrence, whose cognitive effectiveness has shown to favour user's 
acceptance; experiences and results are known of PN application to support different phases of 



www.manaraa.com

Performance indices to characterise concurrent applications 233 

system development; several computer aided environments are now available to support PN 
models construction and analysis. The adopted GSPN (Generalised Stochastic PN) class of 
nets (Marsan (1992)), supported by the GreatSPN tool (Chiola ( 1987) ). allows to integrate 
formal description, proof of correctness and performance prediction of concurrent and 
distributed systems. Within this PN based design approach a special role is played by the 
modelling of a concurrent application oriented to extract its performance characterisation, i.e. its 
main time related aspects. This has revealed to be useful for obtaining a higher confidence level 
with time critical issues and for guiding the mapping of the application over the target parallel 
architecture. Experimenting the proposed approach over real case-studies (e.g. Botti et al. 
(1995a-b)) pointed out the need to deepen some specific steps of model construction and 
analysis. In particular, we here consider a few topics which are often neglected in research 
activities involving stochastic modelling, showing their relevance to correctly obtain and 
interpret the evaluation results of real-life cases: 1) the definition of the most convenient 
abstraction level, 2) the definition of proper parameter assignment criteria, 3) the selection of 
suitable performance metrics useful to characterise a concurrent application and the congruent 
definition of the corresponding quantification indices. The balance of the paper is as follows. 
We briefly and informally recall GSPN definitions and the adopted (modular) modelling and 
evaluation techniques (§2). We deepen motivations and guidelines followed in defining a basic 
set of performance indices needed to characterise an application, giving their formal definitions 
and discussing their peculiarities (§3). We experienced efficacy, usability and flexibility of the 
evaluation technique and of index definitions on a case-study taken from ENEL R&D activity in 
power plant automation, reporting in §4 a small result selection. 

2 MODELLING AND EVALUATION TECHNIQUES: GSPN AND P/R·B 

GSPN have been introduced as a tool to allow the integration of formal description and 
performance evaluation of concurrent systems. While specification and qualitative analysis are 
supported thanks to the underlying untimed PN class (Piaceffransition nets enriched with 
priorities and inhibitor arcs), quantitative analysis is allowed by the explicit representation of 
time within GSPN: a random firing delay with negative exponential pdf is associated with some 
timed transitions, representing the completion time of an activity. The parameter A. of the pdf is 
the mean firing rate oft (therefore A,·l is the mean firing delay). GSPN provide also immediate 
transitions, which fire in zero time and with priority over timed ones, to represent logical or 
time negligible activities. If a marking M enables only timed transitions (in this case Miscalled 
tangible) a race firing policy is adopted: for each transition t, an instance of the associated 
random firing delay is sampled, and a timer is set at this value; while tis enabled, the timer is 
decreased at a (possibly marking dependent) constant speed. When the timer holds zero, 
transition t fires. Resampling or an age memory policy can be equivalently adopted with this 
firing policy, due to the memory less property of exponential pdf. When a marking M enables at 
least one immediate transition (in this case M is called vanishing), a preselection is made, based 
on weights, of one among conflicting immediate transitions with the highest priority. The 
preselected transitions fire concurrently. Immediate transitions are suitable to represent shared 
resource acquisition, enhancing a selection on a purely probabilistic, non temporal, basis. As a 
result of this time representation, a GSPN is isomorphic to a CTMC (Continuous Time Markov 
Chain), for which well known analytical techniques can be applied to compute the distribution 
vector over the state space, either in equilibrium conditions (steady state solution), which is 
guaranteed if the CTMC has one maximal strongly connected component (e.g. if the GSPN is 



www.manaraa.com

234 Part One Research Papers 

cyclic), or at any arbitrary time instant (transient solution). GSPN have a great advantage w.r.t. 
CTMC in terms of easiness, evocativeness and immediateness, both in model construction and 
evaluation. Besides, the availability of a formal model which supports also qualitative analysis 
(e.g. verification of deadlock freeness, liveness, ... ) plays an important role. Even though 
deterministic models should be preferred to specify real time systems, a probabilistic approach, 
and particularly the markovian one based on the exponential pdf, allows to face with the great 
complexity of real systems, and it is particularly useful when the goal is, as in our intention, a 
performance prediction over design solutions. 

To enhance the effectiveness and (re )usability of GSPN models, we previously defined the 
so called Process/Resource-Box (P/R-B) methodology, which guides their construction and 
use. We first developed, within the Esprit project DEMON, the so called Process-Box (PB) 
(Hopkins et al. (1992)). A PB consists of a labelled net which describes the control flow of a 
process, having two sets of places (entry/exit) and two sets of transitions (input/output), called 
box interfaces, representing the begin/end of the control flow, respectively, the interaction with 
the environment. Elementary PB may be composed by means of their interfaces to represent 
more complex structures. In Best and Koutny (1995) the PB approach evolved in a box-algebra 
based on high level nets allowing a full representation of data. For the purpose of performance 
evaluation we have integrated the basic PB with GSPN, first introducing a simplified 
representation of hw components (the available processors) to compare different OCCAM 
program placements over a target architecture (Botti and De Cindio ( 1992) ), then extending this 
representation to other hw resources (links, memories, busses, ... ), giving rise in Botti and De 
Cindio (1993) to the Resource-Box (RB). Intuitively, aRB of an elementary resource consists 
of a labelled net whose places represent the resource states, provided with a set of transitions 
(called service interfaces) representing the basic services offered by the resource. In terms of 
P/R-B, the mapping of a process over a resource is obtained composing the associated PB and 
RB. Elementary RB may be composed to produce a compound RB (e.g. the RB of a 
Transputer node) offering 'macro services' (e.g. assignments, input, output) to the 
environment (e.g. an OCCAM application). It is worth noting that all the box compositions rely 
on the same net operators (basically place and transition multiplication), applied to box 
interfaces. The PIR-B methodology provides PN with modularity and compositionality, 
enhancing their effectiveness and (re)usability in modelling complex systems. The 
compositional (step-wise) model construction and the related modular analysis, not only allow 
to face with model complexity, they also maintain the original system structure within the 
model, reducing the level of ingenuity requested to the user. 

The experimentation of the above methodology emphasised the key role played within the 
performance analysis by the choices of the parameter assignment criteria and of the abstraction 
level. These heavily depend on the goals of the analysis, on the system complexity, and on the 
availability of performance input data (e.g. hw component data sheets, experimental 
measurements, statistical information ... ). We sketch in the following the basic choices we have 
experienced. Firstly, being the application performance characterisation our main goal, we 
model the sw application in detail, while summarising the hw platform. Secondly, we select the 
more significant application instructions w.r.t. the resource utilisation and we classify them, 
according to the carried out activities, in processing instructions and communication 
instructions. For each class we select a representative instruction, whose real execution time can 
be given as input data, and which is represented as atomic within the model: the assignment of 
an integer variable and the transmission of a single byte. Then we define two counter variables, 
ninstr and nbyte, representing the number of instructions forming an operation burst. We 



www.manaraa.com

Performance indices to characterise concurrent applications 235 

assign to each significant transition a mean firing delay (A. -I) equal to the execution time of the 
proper basic instruction multiplied by the proper burst length counter. Modifying the counter 
values we may vary the model granularity, ranging from single basic instructions to bursts. 
This simple approach allows I) to refer transition timing to known values characterising the 
system (the basic execution time includes hw and sw resources), 2) to move the abstraction 
level, grouping basic instructions into bursts, 3) to make the model parametric w.r.t. burst 
length. Our model therefore represents a variable workload w.r.t. both the total amount of 
operations and the processing/communication ratio (p = nbyte+ninstr) of the application. This 
parametricity is also easily reproducible in the case study (§4), where we compute the values of 
the proposed performance indices varying the stochastic parameters within proper ranges, then 
obtaining figures which guide the application performance characterisation and its mapping. 

3 A FLEXIBLE SET OF STOCHASTIC PERFORMANCE INDICES 

To carry out an appropriate quantitative analysis of concurrent applications one needs to 
evaluate a set of metrics -execution/response time, communication/processing cost, reactivity, 
resource utilisation- covering the multiform issues of distributed computing. GSPN modelling 
technique allows to define several quantification indices with small effort. This is why in 
GSPN literature translating performance metrics into suitable indices has often been considered 
trivial. The experience over real case-studies put instead in evidence some important issues, 
dealt more carefully only in recent works (see Balbo et al. (1992a-b )), that we here deepen: 
I the need of verifying that index definitions match the corresponding metrics (congruence); 
I the need of providing final users of GSPN models, not necessarily experienced with MC 

theory, with a set of indices simple to be specified and used, covering the set of basic 
performance metrics (usability); 
the great convenience to have at disposal indices which are easily adaptable to the features of 
specific concurrent programming languages (flexibility). 
Our effort has been spent in setting up a basic set of indices matching as much as possible 

the above requirements, customising existing index definitions selected from GSPN 
bibliography and introducing new definitions. The adoption of a structured evaluation approach 
ba~ed on PIR-B is a significant contribution of the paper. This approach, leading to an uniform 
representation of sw and hw components, make us confident that the indices here proposed to 
characterise sw could be used, more generally, to analyse distributed systems. We have 
experienced index flexibility over two application domains, OCCAM and MML, characterised 
by synchronous, respectively asynchronous communications. We here restrict our attention to 
the steady-state GSPN solution, more suitable for performance evaluation, omitting for space 
reasons any consideration about the possible applications of the transient solution to 
dependability analysis. We provide also a classification of performance indices which reflects 
their interpretation: indices yielding an absolute (i.e. dimensioned) quantification (§3.1 ); indices 
yielding a relative quantification (expressed in terms of probability) (§3.2); relative indices 
quantifiable as absolute, which we may call absolutised (§3.3). This classification allows to 
carry out a quantitative analysis according to different perspectives. To guide the explanation 
we use a simple example, a cyclic printing spooler that alternatively schedules data coming from 
two processes (a process represents a concurrent unit that can be allocated on a node of a hw 
architecture), whose GSPN model, obtained via the compositional PB approach sketched in §2, 
is depicted in Figure I (where box components are highlighted) together with its pseudo-code 
(in a OCCAM-Iike notation). Notice that a) the PB do not have entry/exit interfaces due to the 



www.manaraa.com

236 Part One Research Papers 

cyclic structure of the processes and b) the competition for the shared spooler is modelled by 
conflicting immediate transitions. Although a high abstraction level is adopted, most of typical 
issues of distributed computing -concurrence, non determinism, conflicts, synchronisation- are 
represented. The values of unitary processing/communication times (upt/uct) and of the 
counters ninstr/nbyte are arbitrarily set. 

PAR(Pt. SPOOL. P2) 
where 
Pt: P2: 
WHILE(TRUE) WHILE(TRUE) 

SEQ SEQ 
prep_dala(data 1) 
chant ! datal 

SPOOL: 
WHILE(TRUE) 

ALT 
chan 1 ? buffer 

print(buffer) 
chan2 ? buffer 

print(buffer) 

parameter values: 
uct=upt=ninstr= 1; 

nbytechanl •? =1 0; 

nbyte chan2=!? =20; 

prep_data(data2) 
chan2 ! data2 

Figure 1 GSPN model and pseudo-code of a printing spooler. 

Index definitions meet the GreatSPN 1.5 syntax: they are algebraic expressions involving 
P( c I (the probability that a condition c holds, where cis a logical expressions on place marking 
#p) and E( #p} (the expected number of tokens in place p). Since c corresponds to a set (s;} of 

states of the underlying MC, P( c} = Ls; e c 1t;, where 1t; is the ith component of steady state 
distribution vector 1t. We use <ec_(t)> as abbreviation of the enabling condition oft: since in 

our models arcs do not have multiplicity, <e_c(t)> = ( Ap; e •t (#p;>O) ) A (Apje 1h (#pj=O) ), 

where •t, t•, th denote the set of input, output, respectively inhibitor places oft. 

3. 1 Absolute indices 

The absolute indices are based on the throughput of a transition t (thr(t)). that gives the expected 
number of firings oft at the time unit. If tis timed thr(t) = P( <e_c(t)> ) · A~o where 1..1 is the 
firing rate. Throughputs of immediate transitions -automatically computed by GreatSPN- have a 
more complex form which depends on the throughput of timed ones. 
Execution/Response time. The mean execution time of a terminating program, whose PB 
is made cyclic by an auxiliary transition to such that •to and to• are the entry, respectively the 
exit interface of PB, is quantified by the ADTN (Average Delay in Traversing a Net, Botti and 
De Cindio ( 1992)), i.e. by either thr(to)·l - A.o·' or thr(to)- 1, according to whether to is timed or 
immediate. In case of reactive programs previous expressions may be computed over suitable 
transitions, without the need of an auxiliary one, and may be interpreted as a 
response/completion time. 
Absolute costs. Evaluating the amount of communication/processing performed by the 
processes of an application is crucial to optimise its mapping over an hw architecture. The 
communication/processing transitions are easily recognisable in the PB structure: the former 
belong to the 1/0 interfaces, the latter to the internal structure (see Figure I). A definition of 



www.manaraa.com

Performance indices to characterise concurrent applications 237 

communication cost is given in Balbo et al. (1992b): denoting with Tcom(i.j) the set of timed 
transitions obtained by merging the I/0 interfaces of P; and P; PB, this cost is defined as 
A_ com_ cost! (i,j) = LteTcom(iJ) thr(t), and represents the communication frequency between P; 
and Pj. The parameter assignment proposed in §2 allows to define an alternative communication 
cost, which evaluates the amount of bytes transmitted in the time unit between P; and Pj: 

A_com_cost2(i,J) = LteTcom(iJ) thr(t)·nbytet (I) 

In section 3.2 we will put in comparison the different versions of communication cost. 
Denoting with T proc(i) the set of (timed) transitions inside the PB of P; we can analogously 
define the processing cost of P; (representing the mean number of instructions of P; processed 
in the time unit) as A_proc_cost(i) = LteTproc(i) thr(t)·ninstrt. 

3. 2 Relative indices 

A large part of performance indices used in GSPN literature is simply expressed as a 
probability P( c}. Since P( c} may be seen as the fraction of time unit condition c holds, we call 
these indices as relative. 
Relative costs. We first define the relative cost C(T) of an activity represented by a set T of 
transitions, as the probability of executing the activity at steady-state, i.e.: 

C(T) = P( VteT <e_c(t)>} (2) 

The relative processing and communication costs are then obtained instantiating T: 
R_com_cost(i,j) = C(Tcom(iJ)); R_proc_cost(i) = C(Tproc(i)). Let us discuss the communication 
costs so far proposed. A_com_costl works if the length of transmitted messages - nbyte1- is 
constant. For the spooler e.g. (Figure l) A_com_costl(PI, SPOOL) = 0,03l39ms·l, 
A_com_costl(P2, SPOOL)= 0,03ll6ms-1: the difference is negligible in spite of nbytechanl_!? 
= 10 and nbytechan2_!? = 20. This definition i.e. takes into account A) the structural 
interdependencies between processes, but unfortunately not B) the length of communications: if 
the interaction frequency (thr(t)) between processes practically does not depend on the 
stochastic parameter values due to the application symmetry, a variation of nbyte1 is offset by an 
equivalent variation of P( <e_c(t)>} (recall that A.1 is set to [nbyte1·uct]· 1 ). Obviously, 
A_com_cost2 (I) takes into account both A) and B). This is true also for R_com_cost, based 
on (2): in fact P( <e_c(t)>} = [thr(t)·nbyteruct], and we obtain R_com_cost(PI ,SPOOL) = 
0,3139, R_com_cost(P2,SPOOL) = 0,6232, that agrees with the length of the two 
communication instances (which have the same frequency). 

The availability of the parametric form (2) allows several other useful costs to be defined, 
e.g. the communication cost of P; (as C(Tcom(i)), where Tcom(i) = Uj.,;Tcom(i,j)), the 
processing/communication costs of the whole application (as C(U;T proc(i)), respectively 
C(V;Tcom(i))), and the inactivity cost ofP; (as 1-C(Tproc(i)UTcom(i))). 
Relative reactivity. The reactivity is the most important evaluation metrics for cyclic 
programs; it estimates the 'readiness' of a server process Pj to react to requests coming from a 
client P;. In our models we can identify couples of places <req(i,j), avail(j)> -see Figure 2(a)
that represent the queuing of requests sent by P; to Pi respectively the availability of Pi' An 
intuitive reactivity index, proposed in Balbo et al. (1992b), is the probability of having a 
request waiting for Pi i.e. P( #req(i,j)>O } . This quantification is strictly related to the arrival 
rate of requests: if it were very low, we should obtain a low probability, improperly meaning a 



www.manaraa.com

238 Part One Research Papers 

high reactivity. A partial solution is based on net reduction depicted in Figure 2(b), possible 
(i.e. leading to a stochastically equivalent model) when no immediate transition is in conflict 
with acquire_j (Chiola et al. (1991)): the reactivity index we propose (3) evaluates the readiness 
of the server given that some requests have been made: 

R = P{#avail(i)>O 1\ #req(iJ)>O} + P{#req(iJ)>O} (3) 

Definition (3) works because it considers service rate when some tokens (i.e. requests) are 
in req(i,j) place (notice that for the GSPN in Figure 2(a) expression (3) holds always zero, 
since the simultaneous marking of req(iJ) and avail(i) is vanishing). Unfortunately, we cannot 
do the previous reduction when Pj is a shared resource (e.g. in Figure I, where Pj corresponds 
to SPOOL). We overcome this restriction in §3.3, giving an absolute reactivity definition. 

ovalO) 
req(i.j) 

ustng_j 

Figure 2 (a) Interaction between a server and a client; (b) its structural reduction. 

Resource utilisation. Thanks to PIR-B approach it results very easy to define and compute 
an important performance index as resource utilisation, where resource may equivalently be hw 
or sw. If, as in our models, a place res_i is associated with ith resource (#res_i = 0: resource 
busy; #res_i = 1: resource idle), the ith resource utilisation is given by P{#res_i=O}: the spooler 
utilisation (Figure 1), e.g. is P{#SP.avaii=O}. More generally, if place res_i represents a set of 
n resources of kind i, then the mean utilisation (MU) of a resource (of kind i) is defined as: 

MU = (n-E{ #res_i })+n (4) 

3. 3 Absolutised indices 

A relative quantification of performance metrics is surely suitable for characterising a concurrent 
application. Nevertheless, an absolute interpretation of such relative metrics often reveals to be 
profitable, and sometimes necessary. 
Absolutised costs. It is very simple to give an absolute version of the parametric cost (2) in 
case of terminating programs. We define the absolutised cost C3 (T) as: 

Ca(T) = C(T)·ADTN (5) 

Ca(T) evaluates the fraction of mean execution time spent by a program in the activity 
represented by T. As usual, we obtain the processing/communication costs by instantiating T. 
We have selected from the bibliography on Markovian models a more transparent and general 
way of quantifying the absolutised costs. Let c be a condition holding on a set of markings of 
an ergodic GSPN A, Q the infinitesimal generator of the underlying MC, £. the 
(complementary) set of states where c does not hold. Using simple linear algebra it is possible 
to compute the expected time c holds, denoted in Ciardo and Trivedi ( 1991) (where we demand 



www.manaraa.com

Performance indices to characterise concurrent applications 239 

for more details) as ILA(c)-1• It is: IJ.A{c)- 1 = (l:s;ec 1t;) + (l:s;ec, s;e£ 1t; · Q;.;). A congruent 
definition of absolutised cost of an activity (represented by T) will therefore be: 

C'a(T) = 11A(<ec_( T )>)"1 (6) 

The absolutised communication cost of SPOOL process -Figure I- e.g. is 
llA(<ec_({chanl_!?, chan2_!?} )>)"1, and represents the fraction of cycle time spent by the 
spooler in communication. Since the computation of llA(c)-1 requires an explicit knowledge of 
the underlying MC, it becomes practically unmanageable for GSPN of mean dimensions. We 
aim at enriching GreatSPN to automatically compute 11A(c)"1from a net level specification of c. 
Absolutised reactivity. To give an absolute reactivity we have to compute the average delay 
in traversing a subnet (here called LADTN, i.e. Local ADTN), defined in Marsan (1989) as 
extension of LITTLE formula to GSPN. Let SN = (P', T', ... )be a subnet of a GSPN A= (P, 
T, ... )and P;n, Tout be the set of input places, respectively of output transitions of SN (the 
interfaces: P;n = {peP': •pn (T -T')* 0}; Tout= {teT': t•n P'= 0 1\ t•nP:;t 0 }); LADTNsN is 
the ratio between the expected number of tokens traversing SN and the mean output token flow: 

LADTNsN = (l:pep• E{#p}) + (l:teTout thr(t)) (7) 

The LADTN has a meaning if the paths in which we are interested can be located and a fixed 
ratio exists between the number of tokens entering SN and the firings of output transitions. 
Checking these conditions is generally difficult due to the complexity of real system models. 
This is why formula (7) is practically never used. The only exception known to the authors is 
the decomposition methodology of large GSPN, based on LADTN, given in Murray and Li 
(1991), where subnets must be Marked Graphs and connected with the context only through 
their interfaces (Vte T': •tr~ (P-P') = 0). We are interested in computing LADTN of subnets 
not necessarily limited to the previous restrictions. The location of interesting paths is made 
easier by the box structure, where box places represent states of a process. To formally check 
the token flow conservation, we put some structural restrictions on SN (orthogonal w.r.t. 
Murky and Lie (1991)), not limiting the usability ofLADTN as reactivity index: 

'v"teT-T': (•tn P' = 0) A (t•n P'-P;n= 0) {8) 'v"teTout: t•nP' = 0 (9) 
('v"te T'-Tout : Jt•n P'l = J•tn P'l = 1 A (t• n •t n P')= 0) 1\ ('v"te Tout : J•tn P'l = I) ( 10) 

Above conditions assure that (8) tokens traversing SNare not diverged to the outside and 
from the outside no token is put into SN but into input places, {9) the output transitions of SN 
let only tokens leave, (10) locally the firing of every transition of SN takes one token from a 
place of SN and put it into a different one. Moreover, to make the LADTN interpretation really 
clear, we assume that IPinl =I. If in so formed SN there is no cyclic chain Pkltkl· ··Pkl (tk; eT', 
Pk; e •tk; nP') which does not belong to any traversing chain Pin ... tout• (PinE Pin• loutE Tout). 
every token entering SN leaves it via Tout. but for external interactions. Let us consider again 
the Figure 1. The dashed subnet SN 1 we are interested in is composed by the input place 
Pl.waiting and the output transition il, and meets conditions (9-11); LADTNsN1 correctly 
evaluates the spooler reactivity towards PI, representing the waiting time of a request before 
being scheduled, once it has arrived in place Pl. waiting. For the assigned transition rates we 
obtain LADTNsN1 = E{#Pl.waiting} + thr(il) = 2.085(ms). 

By means of LADTN it is possible to give an absolute evaluation of reactivity (and similar 
metrics) even when there is competition for shared resources. Structureness of box approach 



www.manaraa.com

240 Part One Research Papers 

and checks on subnet structure can help inexpert users towards a correct LADTN specification, 
otherwise enough complex. We are actually trying to adapt formula (7) to SN not conserving 
the token flow (for which (8) does not hold), that should furthermore enhance the LADTN 
usability, for the computation of metrics which are not related to the reactivity. 

4 EXPERIMENTING EVALUATION TECHNIQUES ON MML 

The MML language (Multi Micro Language) and the related MME environment (TxT (1993)) 
have been developed during the early 80s with the financial contribution of ENEL-CRA, as an 
integrated programming environment for the development of sw applications in the field of real 
time distributed plant automation systems. The language is based on the Pascal ANSI in its 
sequential part, provided with primitives to express communication and synchronisation 
between processes. MML programs are a fixed set of concurrent processes, called sequences. 
Each sequence may contain local, remote and interrupt procedures synchronising both on 
Boolean conditions, by RETEST statements, and on queues, by WAIT and SIGNAL 
statements. Sequences communicate between each other via Remote Procedure Call (RPC). We 
selected a testing MML program, including the essential features of the language, and a target 
two-processor architecture to experiment the proposed evaluation technique. Our goal is here 
mainly to experience usability and flexibility of the proposed indices w.r.t. a specific 
framework. The program is composed by six sequences: a Driver, a Monitor, a Dispatcher and 
three Receivers. The Driver accepts characters coming from the keyboard (via an interrupt 
procedure), and makes them available to the Monitor, which collects the characters into arrays 
of a prefixed length via RPC to the Driver. Messages are transferred from the Monitor to the 
Dispatcher (via RPC), and then are distributed to one of the Receivers (via RPC to Newdata 
procedure) for the processing; the Main and Newdata procedures of Receivers synchronise on a 
semaphored queue. Concurrence is mainly present among the processing activities of the 
Receivers. The target hw (still significant within the ENEL plant automation, in spite of its old 
processors) is composed by two processing units, based on a DEC LSill/73 (PUI) and, 
respectively, a Motorola MC68010 (PU2) microprocessor, provided with a local memory and 
an internal bus. These are connected by a (9600 baud) serial link. 

For space reasons we only sketch the construction steps of Receiver[ I] GSPN model 
(Figure 3). Dashed lines point out the PB of Newdata and Main procedures (letters A and B) 
and the RB associated with the queue pseudo variable (C) and the mutex resource (D) (a 
mechanism implicit in MML to guarantee the proper execution of each sequence procedure). 
Except for box D, each component model is obtained from the program code, starting from the 
PB of elementary language constructs, through the sequential composition rules. According to 
the approach adopted in Balbo eta!. (1992a), data representation is limited to the control 
variables (the queue pseudo-variable). As concerns the control flow, we explicitly model the 
wait/signal primitives, as they represent local synchronisation, and the begin/end instructions, 
as they represent synchronisation via RPC with the Dispatcher sequence. The remaining 
instructions are collapsed into single transitions (with post fix til· The whole model in Figure 3 
is obtained applying the parallel composition rule to A, B, C, D boxes. Table I reports the 
meaning of timed transition of Figure 3 and their firing rates. Immediate transitions represent, 
as usual, the competition for shared resources (e.g. the sequence mutual exclusion). The 
planned performance analysis aims at characterising the application by the comparison of three 
different configurations over the target architecture. For that, as sketched in §2, we have 
selected the transitions more significant w.r.t. resource utilisation, recognisable in Table I from 



www.manaraa.com

Performance indices to characterise concurrent applications 241 

the parametric firing rates. Defaull firing rates have been assigned to remaining transitions. The 

parametricity w .r.t. A. (the interrupt frequency), ninstr, nbyte makes it possible to study a 

program class, enhancing the representativeness of the modelled workload. 

Receiver sequence 
queue semaphore; 
deferred ind: integer; 
var bufstring: str; 

procedure newdata (word: str); 
begin 

bufstring := word; 
signal (semaphore); 

end; 

begin rmain *I 
repeat 

if (ind = 1) then 
.. ./*processing by rec. 1 */ 
if {lnd = 2) then 
.. ./*processing by rec. 2*/ 
if (ind = 3) then 
.. ./*processing by rec. 3 */ 
wait (semaphore); 
.. ./*processing of message*/ 

until (false) 
end. 

r in the main of Dispatcher sequence*/ 
.. ./*collecting data; selecting a Rec. *I 
call receiver{ind].newdata(word); 

A B 

ain.t2 

re1.main.WAIT re1.nd_begin_mtx 

Figure 3 Code and corresponding GSPN model of Receiver sequence. 
receiver1 _sched 

Table 1 Description of Figure 3 

Name 
re l .nd_begin 
re l.nd.tl 
re l .nd.SIGNAL/decr 
rel.nd.SIGNAL/empty 
rel.nd_end 
re l .main.t I 
rel.main.WAIT 
re l .main.t2 

Meaning 
synchronisation Rec.-Disp. by RPC 
generic processing by newdata 
effective signal on semaphore 
signal on empty semaphore 
end of remote procedure newdata 
generic processing by main 
queuing of main on semaphore 
processing of a received message 

Firing Rate (fl.s·l ) 
( co+uct· n byte+c 1 ) ·I 

I 
I 
I 
I 
I 
I 
(upt·ninstr )· I 

The considered configurations are: all the sequences allocated on PU I (C I); the Driver, 

Receiver[ I), Receiver[2) allocated on PU I, the remaining sequences on PU2 (C2); the Monitor 
and all the Receivers on PUI , the remaining sequences on PU2 (C3 ). The model of a 

configuration is obtained composing the PB of the application together with the simplified RB 

of hw resources, exactly as done with the Main and Newdata PB and with the mutex RB 

(Figure 3). Every significant transition is properly refined on the basis of employed resources 

(see Botti and Capra (1996)). We report only a small selection of numerical results obtained 

with GreatSPN1.5, focusing on the relative Processing Cost of Receiver[ I) (PCR), which is 



www.manaraa.com

242 Part One Research Papers 

defined by C(T proc(Receiver[t))) (2), replacing the process concept by that of sequence (PCR = 
P{<e_c(rel.nd.tl)> v <e_c(rel.main.tl)> v <e_c(rel.main.t2)>}). PCR evaluates the whole 
system performance: the more it is high, the more the system accomplishes useful work. Figure 
4 represents PCR in Cl, C2 and C3 as a function of ninstr (in logarithmic scale), for a fixed A. 
and for several p (nbyte+ninstr) values, which characterise the workload a~ CPU-bound (low p 
values) or I/O-bound (high p values). Figure 4 points out some expected common behaviours, 
useful for a first validation of the model: PCR grows with ninstr and is higher for CPU
bounded than for I/O-bounded workloads. Instead single curves follow a quite different trend. 
For very high interrupt frequencies (A.= IQ-2J.IS-1, Figure 4(a)} the processing performed in Cl 
is much more than in C2 andC3 (the distributed configurations): C I is undoubtedly the 'best' 
configuration in this case, that means for high interrupt frequencies the serial link bottleneck 
prevents the parallelism among sequences from being exploited. Instead if we consider an 
intermediate frequency (A.= I0-411s-t, Figure 4(b)) we note the existence of a threshold 
workload over which C2 and C3 produce more useful work than Cl (the frequency A.=IQ-~s-1 
is particularly meaningful since it is closely related to input data rate of high-voltage electricity 
substations). Notice that, in spite of A. grows of several magnitude orders when passing from 
Figure 4(b} to Figure 4(a}, the maximum PCR values remain nearly the same (about 0,31), 
meaning that there is a threshold interrupt frequency for the considered sw architecture over 
which the system performances deteriorate. Therefore not only the target hw, but also the sw 
architecture, due to the strong interdependencies among the sequences, cannot efficiently 
manage high interrupt arrival rates. This performance characterisation is confirmed in Botti and 
Capra (1996), where other interesting metrics are evaluated using the definitions given in §3, 
e.g. the communication costs of the sequences and the reactivity to an interrupt request. 

Cl P=0.03 ~ 

,_...--- Cl .,.0.3 

CIP-3 
C2 .,.0.03 
C3 .,.O.oJ 
C3 .,.0.3 
C3P=3 

b::::::::::=-..~--~===:=;:==::=:::.g ::g.3 

Figure 4 PCR (a) A. =JQ-211s-1 

Cl P=().03 

C2 P-().03 

C2P=().3 
C3 

Cl P=().J 

(b) A. =JQ-411s·l ( 10 -log x- 106; 0 -y- 0,32) 



www.manaraa.com

Performance indices to characterise concurrent applications 243 

5 CONCLUSIONS AND FURTHER WORK 

This paper reports the application of a modular GSPN based modelling and evaluation 
technique in the field of plant automation, guided by industrial practicability and usability. A set 
of performance indices is defined to characterise an application and it is experimented on a case
study. Interesting evolutions follow the line of integrating the exponential probabilistic 
evaluation with non exponential or deterministic ones, adopting a mixed model which allows to 
suitably describe timing constraints of critical components. Since the solution of such mixed 
models has often shown to be impracticable, an integrated approach will benefit of the proposed 
PIR-B modularity and compositionality to separately analyse probabilistic and deterministic 
submodels, then reusing the obtained partial results in a simplified global model (e.g. on the 
line of Botti and De Cindio (1993)). 

6 REFERENCES 

Balbo, G. Donatelli, S. and Franceschinis, G. (1992a) Understanding Parallel Programs Behaviour through Petri 
Net Models, Special Issue of Journal of Parallel and Distributed Computin11 on PN Modelling of 
Parallel Computers. 

Balbo, G. Donatelli, S. Franceschinis, G. et al. (1992b) On Parallel Programs Characterisation, in Proc. of 
Conf. Performmu:e Evaluation 1992. 

Best, E. and Koutny, M. (1995) A Refined View of Box Algebra, in Proc. of the 16th Int. Conf. Application 
and Theory of PN, Torino. 

Botti, 0. and Capra, L. (1996) A GSPN Based Methodology for the Evaluation of Concurrent Applications 
Experienced in Plant Automation, submitted to the Euromicm Joumal t!f" Sl'.vtem.v Architecture. 

Botti, 0. and De Cindio, F. (1992) Comparison of Occam Program Placements hy a Generalised Stochastic Petri 
Net Model, in: Proc. of the Conf. Transputer '92: Advanced Research and Industrial Applications. 
Besancon, France. 

Botti, 0. and De Cindio, F. (1993) Process and Resource Boxes: an Integrated PN Performance Model for 
Applications and Architectures, in IEEE Proc. of the Int. Conf. Sy.vtems, Man and Cybernetics, Le 
Toquet, France. 

Botti, 0. Donatelli, S. and Franceschinis, G. (1995a) SWN Models of Parallel Architectures: an Application in 
the Field of Plant Automation Systems, in Proc. of 16th Int. Conf. Apf>lication and Theory of PN
Case-Studies section, Torino. 

Botti, 0. Donatelli, S. and Franceschinis, G. (199Sb) Assessing the Performance of Multiprocessor 
Architectures through SWN Models Simulation: a Case-Study in the Field of Plant Automation 
Systems, subminedfor publication. 

Chiola, G. (1987) A Graphical Petri Net Tool for Performance Analysis, in Proc. of the 3th Int. Workshop on 
Modelling Techniques and Performance Evaluation, AFCET. Paris. 

Chiola, G. Donatelli, S. and Franceschinis, G. (1991) GSPN versus SPN: what is the actual role of immediate 
transitions?, in IEEE Proc. of the 4th Int. Workshop on Petri Nets and Performance Models, 
Melbourne, Australia. 

Ciardo, G. and Trivedi, K.S. (1991) A Decomposition Approach for Stochastic Petri Nets Models, In IEEE 
Proc. of the 4th Int. Workshop on Petri Nets and Performance Models, Melbourne, Australia. 

Hopkins, R. Hall, J. and Botti, 0. (1992) A Basic Net Algebra for Program Semantics and its Applications to 
Occam, in G. Rozenberg (ed.), Advances in PN 92, LNCS n.609, Springer-Verlag. 

Marsan, M.A. (1989) Stochastic Petri Nets: an Elementary Introduction, in G. Rozcnherg (ed.). Advances in PN 
89, LNCS Vo1.424, Springer Verlag. 

Marsan, M.A. (1992) Generalised Stochastic Petri Nets: Definition at the Net Level, in IEEE Transactions on 
Software Engineering. 

Murray, C. and Ll, Y. (1991) Performance Petri Net Analysis of Communications Protocol Software by Delay 
Equivalent Aggregation, In IEEE Proc. of the 4th Int. Workshop on Petri Net.•· and Performance 
Models, Melbourne, Australia. 

TxT (1993) MML Multi Micro Language: Language Reference Manual, TxT S.p.A., Cise S.p.A., Milano. 



www.manaraa.com

21 
Reverse profiling 

F. W. Howell 
University of Edinburgh 
Department of Computer Science, J.C.M.B, The King's Buildings, 
Mayfield Road, Edinburgh, EH9 9JZ, Scotland. 
Telephone: +44 191 650 5141. email: fwh,dcs. ed. ac. ulc 

Abstract 
This paper addresses the problem of designing parallel message passing programs with a 
reasonable idea of how well they will actually perform before they are run. 

Models with very few parameters (e.g. LogP, PRAM) sacrifice accuracy to simplify 
design. By contrast, simulation techniques provide a good degree of accuracy by incor
porating sophisticated architectural models, but present a "black box" to the user. This 
paper suggests a compromise between the two extremes, using an automatically generated 
model with a large number of parameters (a separate equation for each MPI function) 
which is presented to the user rather than being hidden within a black box. The profil
ing interface of MPI may be used "in reverse" to insert (rather than measure) expected 
timings from the model. 

Keywords 
MPI, profiling, performance prediction 

1 INTRODUCTION 

Programming parallel machines is somewhat of a black art as it is hard to know how well 
a program will run on a machine before actually running it. 

The ideal model for designing parallel programs would be both simple to use and 
accurate in its predictions. However such a model doesn't yet exist, the simple models 
which are usable do not predict what actually happens reliably and the models which are 
fairly accurate (such as the simulation techniques) are both too cumbersome for general 
use and also present an opaque "black box" view of an architecture whose mysterious 
inner workings are not exposed. This leads to a development approach similar to the post 
mortem profiling technique used on actual machines. 

The real challenge is to develop an approach which yields useful design information 
without requiring too much effort on the part of the programmer; if the method is too 
involved and complex then the programmer won't use it and will revert to post mortem 
tuning. 

The technique of "reverse profiling" addresses some of these problems. There are two 
strands to the approach: 



www.manaraa.com

Reverse profiling 245 

• The model is automatically generated by running an "MPI characterisation" routine on 
an architecture, rather than being crafted from in-depth knowledge of the architecture. 
The model is made available to the programmer for constructing quick pencil/paper 
analyses of performance. 

e Since performing these calculations becomes tedious, especially when evaluating per
formance on a range of machines and problem sizes, a method is included for auto
matically computing these delays using the profiling interface of MPI. Rather than use 
profiling to extract timing data from a run of a program, "reverse profiling" inserts 
estimated times. 

The performance model consists of separate equations for each MPI function giving the 
average, minimum and maximum times for a given number of processors and message size. 
These equations are generated automatically by an MPI program which times each MPI 
function with a range of message and group sizes, then fits an appropriate equation to 
the data. Running this on an architecture produces a ~TEJXdocument with the equations 
for each function and graphs of the timing data used to generate the equations. This 
"datasheet" may be used by the programmer for quick estimates of the time an MPI 
function will take. A summary file is also produced for the reverse profiling. 

The equations given in the model may be used for analytical performance predictions of 
a program, possibly in conjunction with a spreadsheet or graphing package to experiment 
with alternative designs at an early stage. 

Alternatively the evaluations may be done by the computer using reverse profiling. 
This involves linking in an extra library, in exactly the same way as a normal profiling 
interface is linked. The reverse profiling library intercepts each call to an MPI function 
in the program, uses the appropriate equation to estimate the time the function would 
take and generates a trace file in a similar manner to a standard profiler. It then calls the 
normal MPI function to actually perform the communication. 

The next section describes related techniques for performance prediction; section 3 
describes the routines for generating the model of MPI performance and section 4 details 
reverse profiling. This is followed by an example and conclusion. 

2 OTHER TECHNIQUES 

Many approaches have been suggested to tackle the problem of performance prediction; 
the two ends of the spectrum are simple models like LogP (Culler, 1993) and detailed 
simulation (Brewer, 1993). Foster (1994) provides an interesting description of parallel 
design techniques. Driscoll (1995) uses an approach based on an extension of Amdahl's 
law to look at the performance of a program in terms of equations describing the sequential 
and parallel sections, a higher level view of performance prediction than the approach of 
this paper. 

Getting closer to the source code level, Sarukkai ( 1994) addresses the problem of scalab
ility analysis, using the SAGE/SIGMA toolkit to derive a program graph which is analysed 
to produce a complexity model. Wabnig (1995) also represents the program by a directed 
graph and the hardware by a processor graph, noting that these graphs get very large for 
real programs. 

LAPSE (Dickens 1993) uses a parallel simulation technique for performance predictions 



www.manaraa.com

246 Part One Research Papers 

of message passing programs on the Intel Paragon. It uses a simple delay model for point 
to point communications and provides its own versions of the collective calls written in 
terms of these. 

Reverse profiling is intended as a practical quick approach for the many programmers 
relying on post mortem techniques at present. It scores over other approaches in providing 
models directly based on the parallel primitives the programmer sees and in being as 
straightforward to use as standard profiling. It is not a revolutionary approach; rather a 
step towards the ideal of pre-natal design rather than post-mortem analysis of parallel 
programs. 

3 GENERATING THE MODEL 

It would be useful if performance models for MPI were supplied along with the librar
ies, but this is not the case, so they need to be generated. A model for point to point 
communication is not sufficient as much use is made of collective communication calls in 
MPI, such as MPI...Bcast, MPI..Alltoall, MPI..Reduce, MPLBarrier etc. These all have 
different performance characteristics which are not adequately described by simple point 
to point models such as LogP. Parallel benchmarks tend to be directed towards comparing 
machines rather than providing design data for programmers. 

Nupairoj (1995) describes an approach to benchmarking the MPI collective communic
ations which attempts to work out how the structure of the underlying implementation of 
the collective MPI functions in order to derive reasonable performance models. In contrast 
the technique described below simply provides equations to describe the delays seen by a 
programmer calling each MPI function. A characterisation run only needs to be performed 
once for each architecture of interest to generate the required model. 

3.1 Measuring performance of MPI building blocks 

Characterising the performance of the MPI functions is straightforward in principle; meas
ure the time to complete N calls and take the average. The parameters of interest are the 
number of processors and the size of the messages. 

To time an operation (e.g. MPLBcast () ), a short function is written:-

void tiae_Bcast(int numelema, double ttime) 
{ 

} 

int •buffer a nev int[numelema]; 
MPI_Barrier( comm ); 
double e1 = MPI_Wtiae(); 

MPI_Bcast( buffer, numelema, MPI_INT, 0, comm ); 

tiae ~ MPI_Wtime() - e1; 

tiae '" getmax( tiae ) ; 
delete buffer; 



www.manaraa.com

Reverse profiling 247 

The MPLWt ime 0 function is used to time the operation. The processes are synchronised 
beforehand using an MPLBarrier. This is not perfect, as some processes may return from 
the barrier before others, so an alternative synchronisation technique has also been used 
which first determines the clock skew between different processes' MPLWtime() values, 
then busy waits until the timer reaches an agreed value. This provides synchronisation to 
a resolution of the short time required to read the timer, but just using MPI...Barrier is 
more convenient in practice. 

The time is measured from this synchronisation point until the last process has re
turned. The getmax() function uses an MPI...Reduce across all processes to determine this 
maximum delay. 

The parameters are the size of the message and the number of processes in the current 
communication group comm. These are varied across the range of values of interest on 
the machine, and each timing is repeated to produce a 3D set of measured times of the 
operation on the machine. 

A surface is then fitted to this data using a least squares technique. It is not known 
beforehand what form the equation should take. There may be a constant start up cost 
with a linear data dependent factor for the message to be transferred across the network; 
or a data dependent startup (corresponding to an initial copy of the message into an 
internal buffer) with a data independent transfer cost (in a shared memory machine); 
the time may grow linearly with the number of processors, or with the logarithm of the 
number of processors for tree based algorithms; there may well be a network contention 
factor which predominates with large messages. The list of possible factors is endless and 
varies from machine to machine and from MPI function to MPI function. 

Determining all the physical machine and algorithm parameters is not the aim of this 
approach. The aim is a descriptive equation which is simple enough to use and which 
provides confidence intervals to indicate the goodness of the fit. No claim is made that 
the parameters correspond directly to anything in real life; the only claim is that they fit 
the measured data to a given degree of accuracy. 

In order to obtain this elusive compromise between a simple equation and an accurate 
fit, a brute force approach is taken performing a range of different curve fits and selecting 
and the best. The equations for the time of an operation in terms of the number of 
processes in the group p and the message size d take the form of a constant factor, a 
"startup parameter" dependent on the number of processors, and a "data dependent" 
factor dependent on the message size and the number of processors:-

t(p,d) = c_coeff + s_coeff * startupfn(p) + d_coeff * datafn(p,d) 

startupfn(p) =one of J fog(p) 1 p2 

datafn(p,d) =one of{ ~g(p)d 
p2d 

Thus a total of 12 curve fits are performed using every combination of the startup and 



www.manaraa.com

248 Part One Research Papers 

data functions. These functions were chosen as they provide reasonable fits for all cases 
thus far encountered. It was originally hoped to provide an adequate fit using one or two 
coefficients but this wasn't sufficient for the collective calls. 

A fit is performed to determine the three coefficients using all combinations of the two 
functions and the one with the minimum chi-squared value is selected. Estimates of the 
standard error of each coefficient are also produced. These yield equations giving the 
maximum and minimum expected times. This should only be used as a rough guide, as 
there is no guarantee (or even likelihood) that the measured data conforms to a normal 
distribution. However, it is useful to have at least some indication of expected confidence 
intervals. 

An example equation for MPI...Allreduce is:-

_ { (50± 30) + (200 ± 10) X /og(p) + (4 ± 1) X d 
Tallreduce(Jls)- (300 ± 30) + (20 ± 2) X p + (0.9 ± 0.03) X log(p) X d 

if d <= 32 
if d > 32 

Separate equations are given for "small" and "large" messages as the shape of the fit 
often differs. 

3.2 Output formats 

The model is intended to be available for programmerl> to have an idea of the delay imposed 
by each MPI function. Because of this, one of the output formats is an automatically 
generated U.TEXdocument listing the equations and giving graphs of both the raw data 
and the fitted surfaces. Figure I gives an example page from a datasheet. The other output 
format is a summary file for computer based tools (such as the reverse profiler) to read. 

4 REVERSE PROFILING 

Reverse profiling is a technique which applies the MPI performance model for an archi
tecture to a user's program to generate an estimate of the run time on that architecture. 
It uses the MPI profiling interface to intercept the user's calls to MPI functions and cal
culate the expected delay before returning control to the MPI routine to do the actual 
work. 

Each process keeps track of its own simulation time and updates it whenever an MPI 
function is called. This means a normal trace file can be generated. A model of any machine 
may be used, and any MPI implementation can be used as the development environment. 
For example, workstation implementation of MPI may be used with a Cray T3D model 
to generate predictions of performance on the parallel machine. 

Because it does not involve full simulation, it can't be applied to non-deterministic 
routines, for example those employing dynamic load balancing. However, the performance 
model will provide the key design data for such routines (such as the minimum and 
maximum message times). For non-deterministic programs the method must be combined 
with pencil and paper calculations, or with times measured from the target machine. Note 
that non-deterministic programs are likely to strain simulators and profilers too, since a 
minor miscalculation of delay may affect the outcome. A large proportion of useful parallel 



www.manaraa.com

all gather 

0.001 

Tllno(~ 
O.Otl-

0.00 
O.C06 

O.GG 
0.0126 

0.02 
0.015 

0.01 
0 .001 

Reverse profiling 

....,_,--:..7,~1 ~ 
T .... -·
T..,. -

--(~7,~1 ~ 
T .... - ··· Tm.,t -

30 

T.u,•rlor(/u) = { (50 :I: 20) + (40 :H) X raprtH'..t + (1 :1:: 0.9) x radalo 
(4 :I: 20) + (40 :I: 3) x raprnt:• + (0.3 :I: 0.009) x ,.,...,.._. x radalo 

249 

if rulolo <= 32 
if rulolo > 32 

Figure 1 A page from an automatically generated MPI data sheet. 



www.manaraa.com

250 Part One Research Papers 

programs are deterministic. Reverse profiling is a simple usable technique aimed at the 
majority of programs. 

4.1 Results generated using reverse profiling 

Running a reverse profiled MPI program produces a trace file which may he displayed as a 
timing diagram. Repeated runs may he used to produce graphs showing how performance 
varies with the problem size and number of processors in the machine. The machine model 
is supplied at run time as an environment variable pointing to a file produced by the MPI 
characterisation routines. 

4.2 The technique in detail 

MPI (MPI Forum, 1995) provides a simple profiling interface; all the MPL functions are 
also accessible with the prefix PMPL Profiling (or reverse profiling) code may he added 
by writing substitute MPL functions which perform the necessary (reverse) profiling task 
and call the PMPL function to do the actual work. The linker ensures that the appropriate 
functions are called. The compilation commands to compile a normal MPI program, to 
compile with a profiler and to compile with the reverse profiler are:-

cc prog.c -lmpi 
cc prog.c -lprof -lpmpi -lmpi 
cc prog.c -lrevprof -lpmpi -lmpi 

Each process has a double the_time variable to store its current simulation time. The 
profiled versions of the MPI functions update the_time according to the performance 
equation for that function and write lines to the trace file. 

For point-to-point communications the receiver needs to know the time the sender 
started sending the message in order to work out when it should arrive. The minimum 
delay at the receiving end occurs when the message has been posted by the sender well in 
advance and the message has only to be copied from a system buffer. If the send starts 
at the same time as the recv, there will receiver will suffer an additional wait time for 
the message to arrive. This will be worse if the sender starts after the receive does. 

For collective operations involving synchronisation (i.e. the majority of them), each 
process must know the start time of every other. Thus a point-point reverse profile function 
looks like: 

int KPI_Send( data, dest, ... ) 
{ 

II Send the_time to the destination 
PKPI_Send(the_time, dest, ... ); 
the_time +• I• computed delay for the message •I; 

II Perform the actual send 
PKPI_Send( data, dest, ... ); 

} 

int KPI_Recv( ... ) 



www.manaraa.com

Reverse profiling 

{ 

II Recv the sender's start time 
II Compute the recv delay the_time 
II function of ( the_time, sender_start, message size 

} 

and a collective operation:-

int MPI_Barrier() 
{ 

} 

II MPI_Allgather to get each process's the_time 
II Set local the_time to the latest of all the_times 
II Plus the computed delay for the barrier. 

This works as long as two conditions are met: 

251 

1. MPLRecv is not allowed wildcarded receives. This is because there are two receives (one 
for the sender time, one for the actual data) which couldn't be guaranteed to come from 
the same source. This problem is related to the non-determinism issue raised earlier. 
A solution would be to tag the timestamp onto the main body of the message, or to 
do a wildcarded receive for the first message, work out where it came from, and do a 
receive from there. 

2. Collective operations imply synchronisation. 

At present a trace file is generated which may be displayed with the HASE timing 
diagram tool (Howell, 1994). Additional tracing (e.g. source code line numbers) could be 
added if necessary. Each process generates a separate trace file (p<rank>. trace), and 
repeated runs may be combined to produce scalability graphs. 

4.3 Estimating the computation delays 

The reverse profiling technique has accounted for the communication costs quite happily, 
but the times for user code have not been accounted for. Even without considering com
pute times, useful results may be obtained since the amount of time spent in idle "wait" 
states can be measured from the timing diagram and the communications structure of the 
code is clearly visible. None of the techniques thus far encountered by the author for this 
purpose are entirely satisfactory. In practice a combination of the following techniques 
for estimating computation time are used, with option 2 yielding the preferred tradeoff 
between hassle and accuracy:-

1. Fix it at 0. This is the mirror of the PRAM model which sets the computation cost at 
1 and makes communication cost 0! 

2. Let the user estimate it (in units of seconds, or number of memory accesses, arithmetic 
operations, etc). 

3. Cycle count the assembly code. 
4. Measure the times on the fly. This is only appropriate when developing on the target 

platform and not multitasking or multithreading on a single processor. 



www.manaraa.com

252 Part One Research Papers 

5. Measure the important times with a profiler off line. 

Option 1, ignoring computation altogether, yields graphs showing the total communic
ation time for an algorithm on a machine, which may be useful in itself as it shows how 
computation time must fall in order to make use of the machine. Option 2 is surprisingly 
useful. The programmer adds calls to a "compute(N)" macro which adds N "time steps" 
to the local simulated time, where a "time step" is the time taken to perform an arithmetic 
operation. This time is highly variable because of the influence of the memory hierarchy, 
but may be bracketed between likely limits (e.g. between 1 and 10 microseconds). This 
time step can be given as a parameter to the reverse profiler, so one may check how a design 
fares when given minimum expected compute step time and maximum expected commu
nications time (the worst case for parallel algorithm scalability). Saavedra-Barrera (1989) 
describes characterisation routines for measuring the performance of different classes of 
operations in Fortran and if such figures were generally available for sequential code it 
would make parallel design easier. 

Cycle counting of assembler code (option 3) is the preferred choice of the simulators. 
This technique has been shown to yield very accurate time estimates (Brewer, 1991). 
It involves an extra compilation stage, with the assembly code for the application being 
interpreted and augmented by a routine which inserts instructions to update a global cycle 
count after each basic block. Since the number of cache misses may lead to an order of 
magnitude variation in the execution time, a cache model is required for such simulators. 
This technique also requires augmented versions of all libraries used. 

Experience using the Proteus augment tool indicated that though the technique works, 
it is too time consuming and awkward for quick estimates of compute time. It is also a 
"black box" approach and it it hard to know how reliable the estimates will be. 

Option 4, measuring the compute times on the fly, is tricky on a multi-tasking system. 
Some multi-threading libraries provide "virtual timers" which only measure compute time 
consumed by the current thread, but these are not generally available. In any case, the 
compute times would have to be scaled for the target architecture. 

The final option, profiling important subroutines on the target system and feeding the 
numbers back into the reverse profiler yields the most believable numbers. 

5 EXAMPLE 

This section illustrates results obtained by using reverse profiling with the outer routine 
from the Cowichan suite of problems (Wilson, 1994). 

outer is given a set of N (x,y) coordinates and computes the distance of each point 
from every other point. These distances are stored in a N x N matrix. Since the distance 
from point A to point B is the same as from B to A, the matrix is symmetric about its 
diagonal. For N points, N 2 /2- N distance computations are needed. The diagonal values 
of the matrix are all set to N times the maximum off-diagonal value. The routine also 
generates a real vector of distances of each point from the origin. 

The MPI implementation of the routine generates the matrix and vector as distributed 
data structures, with an equal number of rows on each processor. Each process calls 
MPLAllgather to take a local copy of the input points. It then computes the local section 



www.manaraa.com

Reverse profiling 253 

of the vector and the matrix, performs an MPLAllreduce to determine the maximum 
distance across the matrix and fills the local section of the diagonal. 

-0 

2 

3 

' ' ' 
' ' ' 

I ', I 
~----------~ 

Figure 2 outer : matrix distribution across 4 processors 

Each process computes the distances for all the matrix positions below the diagonal as 
well as those above it, thus doing twice the amount of work necessary, but not requiring 
any extra communication. 

The routine is thus very simple, yet it is not trivial to work out how fast it will run on 
a range of problem and machine sizes. 

A characterisation of the EPCC's implementation of MPI on the Cray T3D was gener
ated using the routines described above. The outer routine was linked with the reverse 
profiling library on a workstation running the LAM implementation of MPI. The routine 
was then run on the workstation varying the number of processes and data sizes to obtain 
predictions of how it would perform on the T3D. 

In the code, an example of one "compute step" is: 

matrix[r- matrix.local_displ()][c] • d; 

i.e. it is an extremely crude estimate of the time. A reasonable estimate of the time that 
this would take on the 150MHz DEC Alpha processors used in the Cray is hard to make 
without a detailed knowledge of the cache, compiler optimisations, pipelines and main 
memory latency. A direct execution simulator would work with the assembly code which 
enables the effect of compiler optimisations to be measured, but still leaves the pipelines 
and memory hierarchy to be modelled (which is possible, but not convenient). 

The time for a basic compute step was left as a parameter and varied from lOOns up to 
lus to see the effects on speedup, estimating that the line of code above (which includes a 
function call, a subtraction, two array indexing operations and a store to memory) would 
take between 15 and 150 cycles on a processor with a 6.6ns cycle time. 

Figure 3 shows the measured and predicted speedups, which correspond reasonably 
with a compute step set between O.lus and lus. 

For this example reverse profiling gives a reasonable prediction of the speedup as long 
as the compute time can be estimated. It also allows "what if" experiments on a design 
to see how it can be expected to behave. 



www.manaraa.com

254 Part One Research Papers 

Figure 3 outer : predicted and measured speedups on the Cray T3D 

6 CONCLUSIONS 

Reverse profiling offers a very quick and easy method of performance prediction for MPI 
programs. Unlike simulation techniques it builds directly upon the full and complete MPI 
libraries available now. It doesn't attempt to handle non-determinism but this is the 
area in which existing profilers and simulators produce the least believable results. It 
works with any MPI implementation which provides the standard profiling interface, so 
predictions may be performed in parallel. 

It is intended to complement rather than replace analytical approaches; making the 
model available to programmers allows pencil and paper analysis where appropriate. 

The most important next stage is to obtain feedback from users to judge whether the 
current balance between simplicity and accuracy is appropriate. Work is also currently in 
progress investigating whether a similar technique could be applied to a shared memory 
programming model. 

7 ACKNOWLEDGEMENTS 

Thanks to Marcus Marr for suggestions on the MPI characterisation routines and also to 
the anonymous reviewers for their detailed and constructive comments. 

REFERENCES 

Brewer, E.A., Dellarocas, C.N., Colbrook, A. and Weihl, W.E. (1991) PROTEUS: A high 
performance parallel-architecture simulator. Technical Report MIT /LCS/TR-516, MIT 
Laboratory for Computer Science. 



www.manaraa.com

Reverse profiling 255 

Brewer, E.A. and Weihl, W.E. {1993) Developing parallel applications using high
pedormance simulation. In Proceedings of 1999 Workshop on Parallel and Distributed 
Debugging. San Diego, CA. 

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramanian, R. 
and von Eicken, T. {1993) LogP: Towards a realistic model of parallel computation. In 
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of 
Parallel Programming. San Diego, CA, May 1993. 

Dickens, P.M., Heidelberger, P. and Nicol, D.M. (1993) A distributed memory LAPSE: 
Parallel simulation of message-passing programs. Technical Report NAS1-19480, NASA 
Langley Research Center, Hampton, VA 23681. 

Driscoll, M.A. and Daasch, W.R. (1995) Accurate predictions of parallel program execu
tion time. Journal of Parallel and Distributed Computing, 25(1). 

Message Passing Intedace Forum {1995) MPI: A Message Passing Intedace. Technical 
report, University of Tennessee. 

Foster, I. (1994) Designing and Building Parallel Programs, chapter 3. Addison-Wesley. 
Available online at http:/ /www.mcs.anl.gov/dbppf. 

Howell, F.W., Williams, R. and lbbett, R.N. (1994) Hierarchical Architecture Design 
and Simulation Environment. In MASCOTS '94: Proceedings of the J!nd International 
Workshop on Modeling, Analysis and Simulation of Computer and Telecommunications 
Systems. 

Nupairoj, N. and Ni, L.M. {1995) Benchmarking of multicast communication services. 
Technical Report MSU-CPS-ACS-103, Michigan State University. 

Saavedra-Barrera, R.H., Smith, A.J. and Miya, E. {1989) Machine characterisation based 
on an abstract high-level language machine. IEEE 1hlns. on Comp., 38{12), 1659-1679. 

Sarukkai, S.R. (1994) Scalability analysis tools for SPMD message-passing parallel pro
grams. In MASCOTS '94: Proceedings of the J!nd International Workshop on Modeling, 
Analysis and Simulation of Computer and Telecommunications Systems. 

Wabnig, H. and Haring, G. (1995) Pedormance prediction of parallel systems with scalable 
specifications- methodology and case study. Performance Evaluation Review, 22(2). 

Wilson, G.V. {1994) Assessing the Usability of Parallel Programming Systems: The 
Cowichan Problems. In Proceedings of the IFIP Working Conference on Programming 
Environments for Massively Parallel Distributed Systems. Birkhauser Verlag AG, April 
1994. 

8 BIOGRAPHY 

Fred Howell received his BSc and MEng degrees in Microelectronic Systems Engineering 
from the University of Manchester Institute of Science and Technology in 1992. He is 
currently a PhD student at the University of Edinburgh Department of Computer Science 
where his research interests include the design of parallel hardware and software. He has 
been funded by EPSRC and by Digital (Scotland) Ltd. 



www.manaraa.com

PART TWO 

Project Reviews 



www.manaraa.com

22 
SEMPA: Software Engineering Methods 
for Parallel Scientific Applications 

P. Luksch, U. Maier; S. Rathmayer; M. Weidmann 
Lehrstuhl fur Rechnertechnik und Rechnerorganisation ( LRR-TUM) 
Institut fiir lnformatik, Technische Universitiit Miinchen 
D-80290 Miinchen 
e-mail: { luksch, maier; maiers, weidmann}@ informatik-tu.muenchen.de 
WWW.· http://wwwbode. informatik. tu-muenchen.de/ 
Tel.: (089)2105-8164; Fax: (089)2105-8232 

Abstract 
SEMPA is an interdisciplinary project that brings together researchers from computer science, mechanical engi
neering and numerical mathematics. Its central objective is to develop new software engineering (SWE) methods 
for (distributed memory) parallel scientific computing. SEMPA is being funded by the BMBF*. 

MOTIVATION 

In many applications, fluid simulations are required because experiments are either impossible (such as in the 
case of climate modeling) or are too expensive. Today, the main factor that limits the use of simulation is run
time. Only parallel processing together with efficient numerical algorithms can achieve the performance that is 
necessary to enable more wide-spread use of simulation. Providing the necessary computational power will make 
simulations feasible in many areas where they would require unrealistic run-times today.ln mechanical engineering, 
productivity can be considerably increased if flow simulations, which today have to be run as batch jobs overnight, 
could be run interactively from a CAD program. 

Parallel processing has developed successfully in the research area over the last years. Now, as there are 
standardized message passing interfaces, such as PVM [GBD+94), MPI [MPI94] etc., portable software can be 
developed for a wide range of hardware platforms- from (heterogeneous) networks of workstations (NOWs) to 
high-end massively parallel systems (MPPs). Since even small companies usually have a number of workstations 
connected by a local area network (LAN), developing parallel software on a commercial basis is becoming an 
attractive option. 

However, experience has shown that software development for parallel systems still is much less productive than 
writing sequential programs. One reason for this is that there are no adequate tools for designing and analyzing 

*Federal Department of Education, Research and Technology 



www.manaraa.com

260 Part Two Project Reviews 

parallel software. In addition, there are no software engineering (SWE) methods that address the problems related 
to parallelism such as synchronization issues, deadlocks and non-detenninism. Finally, there is only very little 
suppon for the software engineer who is faced with the problem of understanding and existing program in order to 
parallelize it for execution on a distributed memory multiprocessor. 

2 PARTNERS 

LRR·TUM (Lehrstuhl ftir Rechnenechnik und Rechnerorganisation, Institut ftir Infonnatik, Technische Univer
sitlit Milnchen). LRR-TUM is in charge of project management. Our research focuses on 
• multiprocessor architectures 
• tools for designing and analyzing parallel programs 
• parallel and distributed applications 
• distributed shared memory systems. 

Advanced Scientific Computing GmbH (ASC) , Holzkirchen. ASC is developing and marketing the CFD sim
ulation package TASCftow which solves the Navier-Stokes equations in 3d space. TASCftow is used in many 
companies and universities for simulating flows in a wide range of applications [TUG95]. 

GENIAS Software GmbH, Neutraubling near Regensburg. The company markets a number of software packages 
for NOWs and MPPs. They have developed the batch queuing system CODINE on NOWs, which will be the 
basis for the resource to be developed in SEMPA. 

lnstitut fiir Computeranwendungen (ICA HI), Universitlit Stuttgart. ICA's research is focused on robust multi
grid methods for a wide range of probleml including computational fluid dynamics, flow in porous media 
and computational mechanics. They have developed the software tool-box UG, which simplifies the adaptive 
solution of partial differential equations on unstructured meshes in two and three dimensions. 

3 OBJECTIVES 

Software Engineering Methods. In parallel scientific computing, software engineers usually are faced with an 
existing program or with existing modules, typically written in FORTRAN77, which they are expected to 
parallelize for execution on a distributed memory multiprocessors (NOW or MPP). Therefore the focus of SWE 
is on the following topics: 
e Analysis of complex software systems. 
e Approaches to Parallelization that are specific to cenain classes of scientific applications 
e Standards for documentation and program development 
e Portability: cover a wide range of hardware platfonns ranging from (low-end) NOWs to high perfonnance 

MPPs. 
e Modularity and Re-usability. 
e Concurrent Software Engineering: coordinate the work of programmers from different disciplines and 

institutions 
ParallelizatioaofTASCftow. The software package solves the Navier-Stokes equation in 3d space on unstruc

tured grids using a finite volume discretization and an algebraic multi-grid solver. The program is written in 
FORTRAN 77 and has about 113,000 lines of code. 

Load Balaaeing and Resource Management. A resource manager is being developed, which basically is a batch 



www.manaraa.com

Compatu 
Scicacc 

SEMPA 

Academia 

Flpre I partners involved in lhe project 

Compurer 
cience 

261 

queuing system for parallel applications running on NOWs. The individual processes of the application are 
dynamically assigned to available processors (i.e. worksrations). The resource manager will support load 
balancing by providing appropriate resource usage information and a mechanism to migrate processes from one 
workstation ro another. 

The result ofSEMPA will he 

e a collection of SWE methods that have heen approved in practice, 
e a prototypical implementation of the parallel version of TASCftow, 
• a prototype of a resource and load manager for batch ellecution of parallel applications. 

Upon completion of the research project, our industrial partners intend to develop further the prototypes of the 
parallel CFD package and the resource manager towards products that can be marketed commercially. 



www.manaraa.com

262 Part Two Project Reviews 

Figure 2 project objectives and their interactions 

4 PROGRESS REPORT 

The project has staned in April, 1995. Up-to-date information about progress as well as project re
ports and publications related to SEMPA are available via WWW (URL http://wwwbode.informatik.tu
muenchen.delparallelrechner/applications/sempal). In the subsequent section, we summarize the results achieved 
so far. 

4.1 Analyzing the sequential program 

The first step in parallelizing TASCIIow has been to acquire the necessary understanding of the algorithms it uses 
and their implementation. ASC and LRR-lliM have been organizing a series of meetings, covering the following 
topics (in that sequence): 

I. basics of CFD, i.e. the governing equations and their physical interpretation, discretization methods, and 
numerical methods for solving the system of linear equations that results from discretization. 

2. a global overview of the code structure and the main data structures. 
3. a more detailed review ofTASCIIow's main modules, stepping through each module subroutine by subroutine. 

Each meeting staned with a presentation by ASC, which was followed by a discussion. At LRR-TUM, we 
documented our view of what we had learned in a meeting in form of an internal report, which then was reviewed 



www.manaraa.com

SEMPA 263 

by ASC. This procedure has proved to be an efficient way for know-how transfer between groups from different 
disciplines, since it has helped to identify and fix sources of misconception very early and quickly improved our 
understanding of each other's terminology and point of view. 

As a final step, a framework has to be set up that defines a standard for documenting the design of the sequential 
program from the computer science point of view. 

4.2 A Concept for ParalleUzing TASCftow 

Based on the insight gained from analyzing the program structure, a parallelization concept has been defined and 
documented [Luk95]. SEMPA follows a two-level concept of parallelism. 

On the lop level the SPMD model is used. The sequential algorithmt is replicated in multiple processes each of 
which operates on a partition of the problem description. An additional master process is used for program set up 
and for doing UO. Using parallel UO systems, which are available for a number of platforms, is being considered, 
too. 

Partitioning is done node-based, i.e. the nodes of the (unstructured) grid are divided into disjoint sets. We use a 
public domain graph partitioning package (MeTIS [MET95]) for assigning nodes to partitions. 

Below the SPMD level of parallelism, parallelization is considered at the level of processing nodes. Each 
replicated worker of the SPMD model can be furtherparallelized into a number of concurrent threads (light-weight 
processes having access to shared memory). This second level of parallelism can make use of multiple CPUs per 
processing node as they are available in new MPPs or workstations. 

4.3 Interactive and automatic Parallelization Tools 

The parallelization of an existing program, especially if it is complex and has been developed by many engineers 
over a long time, is a quite difficult and error-prone task. 

Research projects as well as commercial efforts during the last years have been dealing with this problem. Most 
available tools are source-code analyzers for FORTRAN77 programs which parallelize according to the SPMD 
model. One of those tools has already been subject of investigation within SEMPA. It is the quite sophisticated 
interactive an automatic parallelization tool FORGE [Res95]. There the most significant loops are identified by 
either using profiling information, or checking the code for the deepest loop nestings. Once the loops have been 
chosen, the arro~ys referenced inside of them are partitioned and distributed according to the partitions. The parallel 
processes then run the same program but only on a subset of the partitioned data structures following the so-called 
owner computes rule. 

The advantage of these tools is that the user can get a better understanding of the program that he is about 
to parallelize. He also is taken off the burden to explicitly program message passing code. On the other hand he 
anyhow has to have a good understanding of how message passing really works because the tools are not yet at a 
point where they can produce efficient code. Neither can they really work on very complex packages as for example 
TASCHow. 

4.4 New Languages 

Moving from FORTRAN 77 to newer programming languages meets the requirements of modern computer archi
tectures, programming paradigms, and software engineering aspects. Fortran 90 for example offers not only more 

t augmented hy additional code for communication and synchronization 



www.manaraa.com

264 Part Two Project Reviews 

complell data structures and data encapsulation but also provides language constructs (array operations) for con
current ellecution. The latest of all FORTRAN evolutions, High Performance Fonran, additionally has constructs 

for ellplicit data distribution as well as constructs for ellpressing concurrency. 
FORTRAN 77 compilers produce fast object code and numerous numerical programming libraries are available 

due to its long time of ellistence. Object oriented design is still uncommon in scientific computing because the 

compilers (e.g. for C++) do not yet generate optimized code that is comparable to the one generated by FOR

TRAN 77 compilers. However, the fundamental ideas of object oriented programming- objects, class-hierarchies 
and polymorphism - are of great advantage to modem software engineering and can help to overcome the gap 

between the code development and its concept. 
In SEMPA, we have decided that rewriting TASCflow as a whole in an object-oriented language is infeasible due 

to manpower restrictions. Instead, we have selected a module of reasonable size for implementation in Fonran 90, 

C++ (and possibly other languages) to demonstrate the integratability of object-oriented techniques to a scientific 

application, and to evaluate the appropriateness of these languages for our purposes. 

REFERENCES 

[GBD+94) AI Geist, Adam Beguelin. Jack Dongarra, Weicheng Jiang. Robert Manchelt.. and Vaidy Sunderam. 
"PVM: Parallel Vinual Machine- A Users' Guide and Tutorial for Networked Parallel Computing". MIT Press 
( 1994). www: http://www.netlib.org/pvm31booklpvm-book.html. 

[Luk95] Peter Lu.lt.sch. A Concept for Parallelizing TASCflow. SEMPA-Repon SEMPA-TUM-95-05, Technis
che Universitiit Milnchen, lnstitut filr lnforrnatik (September 1995). www: http://wwwbode.inforrnatik.tu
muenchen.delarchiv/Projektberichte/SEMPA/ws-aug-95.ps.gz. draft version. 

[MET95] "METIS: Unstructured Graph Panitioning and Sparse Matrill Ordering System". George Karypis and 
Vi pin Kumar, University of Minnesota (1995). 

[MPI94) MPI: A Message Passing Interface Standard. Technical repon University of Tennessee, Knoll ville, Message 
Passing Interface Forum (May 1994). 

[Res95] Applied Parallel Research. ''The FORGE Product Set". Applied Parallel Research Inc., 550 Main Street, 
Placerville, CA 95667 (February 1995). 

[TUG95) 3rd TASCflow User Conference - Presentations. Tech. Repon ASCGII'R-95-04, Advanced Scientific 
Computing GmbH, Aying (May 1995). 



www.manaraa.com

23 

EPOCA: status and prospects 

S. Donatelli4 , N. Mazzocca6 and S. Russo6 

" Dipartimento di Informatica, Universita di Torino 

Corso Svizzera 185, 10149 Torino - Italy 

Tel.: +39 (0)81 7429246 Fa.x: +39 (0)81 7429 E-mail: susi@di.unito.it 

b Dipartimento di Informatica e Sistemistica, Universita di Napoli "Federico II" 

Via Claudio 21, 80125 Napoli - Italy 

Tel.: +39 (0)81 7682893/5 Fa.x: +39 (0)81 7683186 E-mail: ma.zzocca,russo@na.dis.dis.unina.it 

Abstract 
In this paper we present a review of the a.ims, achievements and prospects of the EPOCA 
project. EPOCA is a Petri net based system for performance evaluation and analysis of 
concurrent applications. Research issues, current outcomes and future directions of the 
project are described. 

Keywords 
Parallel software engineering, Petri nets, CSP, performance evaluation 

1 PROJECT AIMS AND MOTIVATIONS 

EPOCA (Environment for Performance evaluation and analysis Of Concurrent Applica
tions) is a CASE system that supports the development, the qualitative analysis and the 
predictive performance analysis of parallel and distributed programs. EPOCA is a joint 
project of the Performance Evaluation group at the Department of Computer Science of 
the University of Torino, and of the Parallel Architectures group at the Department of 
Computer Science and Systems of the University of Napoli. The project had two ma.in 
objectives: 

• the investigation of issues in the inclusion of Petri net based formal techniques for both 
program validation and performance evaluation into parallel software development; 

• the definition and the construction of related appropriate CASE support tools. 

To meet these goals, a methodology has been defined, centred on the use of a class of timed 
Petri nets, namely Generalized Stochastic Petri Nets (GSPNs). GSPNs (Ajmone-Marsan, 
1984) have been chosen because they are a formalism suited to study time independent 
(correctness), as well as time dependent (performance) properties of concurrent programs, 



www.manaraa.com

266 Part Two Project Reviews 

and because they allow performance figures to be computed either by solving the Markov 
chain isomorphic to a GSPN, or, for large models, via simulation (Donatelli, 1994-a), 

The methodology iterates through the following steps, until an implementation is ob
tained, which is correct and meets desired performance requirements: 

• application implementation in a C-hased CSP-like language; 
• construction of a qualitative GSPN representation of the program; 
• program behaviour analysis and validation via net analysis; 
• introduction of program quantitative parameters in the untimed model; 
• definition and computation of performance indices. 

2 PROJECT OUTCOMES 

The project has resulted at this stage in the following outcomes: 

• a methodology for modelling and analysing concurrent programs; 
• an integrated prototype CASE support system for the development, modelling and 

analysis phases; 
• scientific publications: the EPOCA bibliography below lists the major journal and 

intemational conference papers and technical reports; 
• scientific collaborations: they have been established with other groups active in the 

area of parallel software engineering, to cover research issues at the intersections with 
other projects. 

In the following, the features of the EPOCA prototype system and the experience with it 
are summarized. 

3 THE CASE SYSTEM EPOCA 

In EPOCA results and proofs about a concurrent program are derived from results and 
proofs on a GSPN model of it. This approach is similar to the one of Shatz and Cheng for 
Ada (Shatz, 1987), which is limited to qualitative analysis. The EPOCA system results 
from the integration of different, and in same way complementary, experiences of two 
research groups, which resulted in the development of two tools: DISC (Iannello, 1990), a 
message-passing language developed at the University of Napoli, and GreatSPN (Chiola, 
1991), a GSPN editing and analysis tool, developed at the University of Torino. The main 
functionalities of EPOCA are: translation of DISC programs into GSPN models, analysis 
of time-independent properties (based on structural or state space analysis), and pro
gram quantitative characterization through automatic definition and computation of net 
performance indices. Of course the overall EPOCA environment includes also all the func
tionalities of DISC (makefile generator, compiler, linker tools, run time support, monitor, 
post-mortem analyzer and window-based interface), and those of GreatSPN (graphical 
GSPN editor, net analysis tools). 

EPOCA allows to build a model of the process interactions. Program flow control 
statements are modelled only if they contain inter-process communications. Variables are 



www.manaraa.com

EPOCA 267 

Figure 1 The program translation and analysis process in EPOCA. 

not modelled automatically. Purely sequential parts of the code are collapsed into timed 
transitions, whose timing parameter represents the code execution time. Using this level 
of abstraction, the GSPN model is appropriate to analyze qualitative and quantitative 
properties, avoiding to deal with the detailed modeling of the sequential part of the code. 
Since the application does not need to be complete, for instance only the basic structure 
of process communication and activation may have been already coded, EPOCA allows 
the evaluation of certain design decisions without requiring the full implementation to be 
available. 

Figure 1 summarizes the main features of the translation and solution process applied to 
a DISC program (assumed to be composed of 2 files), showing the role of the main EPOCA 
tools. The PN G EN module compiles each source file into an intermediate representation, 
that contains the translation of each process: all cross-references still have to be solved. 
The PNLINK module combines the intermediate files to produce the global GSPN model 
(defined by a ".net" and a ".def" file). The final format suitable for GreatSPN, generated 
by PNLINK, consists of the topological description and of the graphical layout of the net. 
This is useful for net visualization, animation and further editing. Proper tools provide an 
automatic definition of the GreatSPN expression of the desired performance indices. The 
model is then solved either exactly or approximately through a discrete event simulator. 



www.manaraa.com

268 Part Two Project Reviews 

4 USING EPOCA 

The analysis of an application in EPOCA can start from a program skeleton (prototype), 
that defines the synchronization and the interactions between processes, abstracting from 
the algorithmic details. This gives the possibility to investigate the properties of the appli
cation using an incremental validation approach; for instance, the presence of a deadlock 
should be detected independently and before the evaluation of performance indices, that 
requires the complete estimate of the quantitative parameters. 

After the automatic derivation of the GSPN model, the analyst can start performing the 
qualitative program analysis. This can be done using algebraic techniques, or executing 
the net model, or by the inspections of the reachability graph. The algebraic techniques 
provide information on the correctness and the behavior of the system. The reachability 
graph allows to investigate the dynamic evolution of the concurrent program through its 
state space, and it is the basis for constructing a performance model. 

The performance figures computed by EPOCA can be grouped in three classes: phases, 
communication costs and interference costs. A program phase is a period of the execution 
in which a given set of processes is active. EPOCA computes the set of phases, the duration 
of each phase, the maximum/ average number of processes concurrently active (degree of 
parallelism). Communication costs are used to study quantitatively the communication 
profile of the application: for instance, they allow to build the program communication 
graph. Interference costs express the probability of two processes requiring the CPU at 
the same time. All these metrics provide a quantitative characterization of the program 
running on the best possible platform. 

The EPOCA methodology and tools have been applied to several case studies, represen
tative of different common application classes. Table 1 reports a. survey of the experiences 
with EPOCA, summarizing for each class the main goals of the program analysis, a.nd the 
metrics computed by the EPOCA tools. These experiences show that EPOCA provide an 
invaluable aid for applications where formal analysis is of fundamental importance, such 
as safety critical ones, and that it is extremely useful for process control and distributed 
client-server applications, for which the dependency from input data is very well described 
by a stochastic model. The tools are also useful to reason on distributed algorithms, while 
for parallel numerical applications the Petri net-based approach to performance predic
tion gives results comparable to those of other methods (analytical models and monitoring 
techniques), but in many cases it is less effective. 

Readers interested in getting a deeper insight in the different issues addressed in the 
project can refer to the EPOCA bibliography below. Balbo (1992) presents the net trans
lation rules for the CSP constructs, while Donatelli ( 1994-b) describes the translation 
from DISC to GSPN. Balbo (1994) defines the program performance indices, and shows 
how they can be computed on the GSPN model. Donatelli (1994-a, 1994-b, 1996), Mazzeo 
(1996) and Jelly (1995) contain the description of some case studies (see Table 1). Do
natelli ( 1994-a) discusses also the advantages and disadvantages of having chosen the 
GSPN formalism as the model formalism of EPOCA. Donatelli (1994-b) gives details 
on the architecture of the tool, while the role of EPOCA as a tool for computer aided 
distributed software engineering is discussed by Donatelli (1996). 



www.manaraa.com

EPOCA 269 

Table 1 A survey of the experiences with EPOCA. 

Application 
class 

Client-server 

Process 
control 

Safety-criti
cal systems 

Distributed 
algorithms 

Parallel 
numerical 
algorithms 

Description 

Inter-departmental 
administrative 
computing center 
(Donatelli, 1996) 

Monitoring system 
(stochastic depen
dency from in
put data) (Balbo, 
1994) 

Analysis' goals 

Deadlock freedom, program 
comprehension, bottleneck 
detection, performance tun
ing (with varying data trans
fer rates and remote data ac
cess probabilities) 

Program correctness 
performance 

and 

Railway transport Deadlock freedom, program 
system comprehension, safety analy

sis, performance analysis 

Circuit simulator PJ"Ogram correctness 
(Balbo, 1992) 

FFT (Donatelli, 
1994-a.) 

Comparison of data parti
tioning and communication 
strategies; program perfor
mance as a function of the 
data transfer rate and of the 
node computing power 

5 CONCLUSIONS AND FUTURE DIRECTIONS 

Computed parameters 

Qualitative: deadlock 
states, reachable states, 
net animation. Quantita
tive: service time, commu
nication graph, efficiency, 
degree of parallelism 

Qualitative: deadlock and 
reachable states. Quanti
tative: mean service time, 
comm. graph, efficiency, 
degree of parallelism 

Qualitative: deadlock and 
reachable states, net ani
mation. Quantitative: 
probab. of hazard states 

Qualitative: 
detection 

deadlock 

Qualitative: deadlock de
tection. Quantitative: de
gree of parallelism, pro
gram phases, communi
cation graph, completion 
time, CPU utilization 

The EPOCA project has addressed a problem which is perceived as increasingly impor
tant in the concurrent software engineering community, namely the definition of formal 
techniques and tools to support the analysis and the validation of the system implemen
tation (i.e., the program). In EPOCA a methodology has been proposed, based on the 
use of the GSPN formalism. The project has shown that this methodology can be fully 
supported by automatic tools, and that an effective approach to do that is to integrate 
existing CASE tools for program development and net analysis. Although EPOCA has 
considered a specific CSP-like language, most of its features are independent of the details 
of the programming language used for system implementation. The project has pointed 
out that programs should have specific characteristics - such as a clear separation of struc
tural and behavioural aspects - for static analysis tools to be capable of modelling them 
automatically. 

The experience in EPOCA proved attractive and promising. This has suggested to 
extend the approach to the introduction of verification and performance evaluation tech
niques into the design refinement phase of parallel software development. Work has begun 
to investigate the benefits of introducing the EPOCA approach into the PARSE methodol-



www.manaraa.com

270 Part Two Project Reviews 

ogy (Russo, 1995 ). PARSE (Gorton, 1995) is a design methodology is based on a graphical 
notation, that enables the developer to describe a parallel software system in terms of a 
collection of concurrent components interacting via message passing. The transformation 
from the PARSE design domain to the Petri net domain provides two fundamental advan
tages: (a) it provides formal support for design verification, (b) it allows to animate the 
system design specification, by executing the net. The refinement steps, until the analysis 
reveals that the design is error-free and that it can meet the performance requirements, 
will provide the software engineer with increased confidence in the final quality of the 
design, before proceeding to the implementation. 

REFERENCES 

Ajmone Marsan, M., Balbo, G. and Conte, G. (1984) A class of generalized stochastic 
Petri nets for the performance analysis of multiprocessor systems. ACM Trans. Comp. 
Systems, 2( 1 ). 

G. Chiola. (1991) GreatSPN 1.5 software architecture. Proc. 5th Int. Conf. Modelling 
Techniques and Tools for Computer Performance Evaluation, Torino, Italy. 

Gorton, 1., Gray, J. and Jelly, I.E. (1995) Object-Based Modelling of Parallel Programs. 
IEEE Parallel and Distributed Technology, 3(2). 

Iannello, G., Mazzeo, A., Savy, C. and Ventre, G. (1990) Parallel software development 
in the DISC programming environment. Future Generation Computer Systems, 5(4), 
365-372. 

Shatz, S.M. and Cheng, W.K. (1987) A Petri net framework for automated static analysis 
of Ada tasking behaviour. The Journal of Systems and Software, 8, 343-359. 

EPOCA BIBLIOGRAPHY 

Balbo, G., Donatelli, S. and Franceschinis, G. (1992) Understanding parallel program 
behavior through Petri net models. Journal of Parallel and Distributed Computing, 
15(3), 171-187. 

Balbo, G., Dona.telli, S., Franceschinis, G., Mazzeo, A., Mazzocca, N. and Ribaudo, M. 
( 1994) On the computation of performance characteristics of concurrent programs using 
GSPNs. Performance Evaluation, 19, 195-222. 

Donatelli, S., Franceschinis, G., Ribaudo, M. and Russo, S. (1994) Use of GSPNs for con
current software validation in EPOCA. Information and Software Technology, 36(7), 
443-448. 

Donatelli, S., Franceschinis, G., Mazzocca, N. and Russo, S. (1994) Software architecture 
of the EPOCA integrated environment. Proc. 7th Int. Conf. Modelling Techniques and 
Tools for Computer Performance Evaluation, LNCS No.794, Springer-Verlag. 

Mazzeo, A., Mazzocca, N., Russo, S. and Vittorini, V. (1996) A method for predictive 
performance evaluation of distributed programs. To appear in Simulation: Practice and 
Theo1·y. 

Russo, S., Savy, C., Jelly, I.E. and Collingwood, P. (1995) Petri net modelling of PARSE 
designs. Joint Tee. Rep. 7/95, Computing Research Centre, Sheffield Hallam Univ. and 
Univ. of Naples. 



www.manaraa.com

24 
The PARSE Project 

I. E. Jell/ and I. Gorton2 

1 Computing Research Centre, Sheffield Hallam University, 
Sheffield Sf 1 BHD, UK. Email: i.jelly@shu.ac.uk 
Tel: +44 (0)114 253 3763, Fax: +44 (0)114 253 3161 

2CSJRO Division of Information Technology, Locked Bag 17, North Ryde, 
NSW 2113, Australia. Email: iango@syd.dit.csiro.au 
Tel: +61 (0)2 325 3160, Fax: +61 (0)2 325 3101 

Abstract 
Within the PARSE project, issues relating to the development of parallel and distributed software 
are being researched. These include analysis and design techniques, verification of system 
behaviour, performance evaluation and tool support. This paper reviews the work undertaken in 
the project, indicates future directions for research and provides a bibliography of key publications. 

Keywords 
parallel processing, distributed systems, software engineering, EPOCA, PARSE 

1 PROJECT AIMS 

The PARSE (PARallel Software Engineering) project began in 1991 as a collaborative project 
between Sheffield Hallam University and two Australian Universities. Its aim has been the 
development of techniques and tools to support the production of high quality software for a wide 
range of parallel and distributed systems. The collaboration has been extended to the Universities 
of Sheffield and Naples, and now includes an industrial partner. 

Within the project, research has been focused on the issues involved in the development of 
parallel and distributed software systems. It brings together a number of projects which are 
addressing a range of technical issues within the field. These involve the development of 
appropriate techniques and tools to support good software engineering practice for parallel and 
distributed systems. The collaboration has revealed a unifying approach to the consideration of 
different aspects of the development of systems, based round the integration of pragmatic design 
engineering principles and formally based techniques. 

Currently parallelism in software systems can be employed either to provide better performance 
in large scale scientific computations, or to support the development of smaller scale systems 



www.manaraa.com

272 Part Two Project Reviews 

where issues of real time constraints, physically distributed control and fault tolerance are involved. 
In addition, system programmers constructing operating systems and associated low-level system 
utilities exploit concurrent tasks to share and manage resources amongst users and user programs. 
However the importance of parallel software is likely to grow in the next decade. Major 
technological advances in processing power, desktop operating systems, networking and user
interface systems will converge, creating new, high-volume application areas in distributed systems, 
consumer electronics and multimedia systems. All of these naturally lend themselves to parallel 
software solutions. 

Within the PARSE project the emphasis had been on the development of design principles to 
promote the construction of efficient, robust and reusable parallel and distributed systems. A 
general framework is proposed to cover a range of application types and implementation 
environments. The designer may need to employ different views and techniques within the 
development process; the importance of providing clear mechanisms for interfacing with these has 
been recognised from the outset of the PARSE project, and the concept of methods integration is 
central to our approach. Although primarily aimed at software development, we are currently 
applying the techniques in relation to hardware/software codesign. 

2 PROJECT OUTCOMES 

The major outcomes from the project at this stage are: 
I. Over twenty journal and international conference papers, and a number of technical reports. 
2. Prototype CASE tools for the key phases of PARSE have been developed and demonstrated. 
3. Techniques developed as part of the project are being employed for the production of industrial 

applications, thus providing feedback to the academic partners. 
4. The collaborators have been active in the establishment of a research community in the area of 

parallel and distributed software engineering, and have organised workshops on this topic. 

3 KEY RESEARCH ISSUES 

3.1 PARSE Methodology 

The PARSE methodology supports a systematic design refinement process and provides a 
graphical approach (PARSE process graphs) to express high level architecture and language 
independent design abstractions. A staged design methodology has been defined within which the 
developer moves from a high level abstract view of the system to a more concrete representation of 
the software. Different application types may require variations on the process: for example, real 
time systems design requires the introduction of temporal constraints at an early stage in the design 
process; for safety critical systems, formal verification may be required throughout the 
development phases. 

3.2 Design Notation 

The PARSE process graph notation allows developers to describe the system in terms of a 
hierarchy of interacting components. It is object-based and supports a staged design refinement 
approach. Process objects interact by message passing on designated communication paths. Both 
process objects and communication paths are classified according to their role in the system. In 



www.manaraa.com

The PARSE project 273 

addition, information about the dynamic behaviour of the system is captured with the graphical 
notation by the introduction of path constructors which describe the order of handling of incoming 
messages by process objects. Process graphs can be systematically supplemented with additional 
behavioural details by using formalisms such as Petri nets or CSP, or a dedicated Behaviour 
Specification Language (BSL). Translation from BSL descriptions into Petri net specifications can 
be fully automated and forms the basis for the work within the EPOCA project. 

3.3 Tool Suppc)rt 

Prototype design editors have been constructed to support developers in the construction of 
process graph/BSL designs, and work on more sophisticated versions of these is proceeding. The 
emphasis within this work is to ensure that the tools developed will support flexible integration of 
different techniques: appropriate interfaces must be defined to allow easy access to a • range of 
verification and simulation and programming systems. Hence we are exploring the use of meta
CASE systems to implement the PARSE support tools. In order to bridge between the design and 
implementation stages of the software development cycle, research into code generation for 
designs specified in BSL format has lead to the development of prototype code generators. 
Currently PVM and Occam tools have been implemented and code generators for DISC 
(Distributed C) under the EPOCA project are under consideration. 

3.4 EPOCA Integration 

Design validation plays an important role in the development of robust software systems, and the 
integration of behavioural analysis techniques involving Petri nets has been explored. Original work 
within the PARSE project demonstrated the potential for use of Petri net analysis, and recent 
collaboration with the EPOCA project team has provided a mechanism for this. 

Under the EPOCA project, techniques have been developed for the analysis of parallel software 
systems by means of stochastic Petri nets. This resulted in the integration of the stochastic Petri net 
toolset GreatSPN with the DISC (DistributedC) programming environment. DISC allows 
distributed applications to be implemented and executed on a network of workstations. DISC 
programs can be automatically analysed by the use of GreatSPN. 

Within the PARSE project further integration is planned. We have demonstrated how PARSE 
BSL descriptions can be translated either into DISC code, or directly to GreatSPN format. The 
design can therefore be subjected to analysis to provide initial feedback to the developer, and 
further analysed at the code stage. Work is currently underway to automate this translation and 
provide an interface to GreatSPN, a toolset based on stochastic Petri nets. This supports both 
qualitative and quantitative analysis, and introduces scope for performance prediction and 
modelling at the design stage. 

3.5 Client-Server Behaviour Modelling 

The production of deadlock free software is a primary consideration in the development of many 
parallel systems. Recent work has investigated how designs can be constrained to facilitate 
deadlock detection without having to explore the complete state space of the program's execution .. 
Client-server behaviour modelling involves the development of a design which conforms to certain 
guidelines with respect to the type of interactions permitted between process objects. The result is 



www.manaraa.com

274 Part Two Project Reviews 

a software design which can be directly verified as deadlock free without recourse to analysis using 
a fonnalism such as Petri nets. A simple graphical notation has been developed to represent client
server relationships within a software design. This notation can be used in association with PARSE 
process graphs, by mapping client-server behaviour graphs onto process graph descriptions to 
provide full design infonnation for the developer. This approach would seem to be especially 
promising for complex, safety-critical systems. 

3.6 Object-Oriented Analysis Techniques 

The extent to which traditional analysis techniques offer a foundation for the development of 
parallel and distributed software systems forms the basis of our work in this area. Original work 
has suggested that object-oriented analysis techniques such as OMT could be used in association 
with PARSE design methods. We are now canying out an evaluation of the role of different 
analysis techniques within the development framework for parallel and distributed systems. 

3. 7 Hardware/Software Codesign 

Within the PARSE project we are researching techniques to support high level hardware/software 
codesign for a range of low power, hand held devices with stringent design constraints. Initial work 
has indicated that the PARSE design approach provides an appropriate framework for 
implementation independent design descriptions. Process graphs are used to specify the system 
architecture at a high level of abstraction; and BSL descriptions developed to describe the 
interactions between components. Translations can then performed from the BSL descriptions into 
appropriate hardware description languages, eg VHDL, and refined software design specifications. 
We are researching the introduction of constraint representation and partitioning strategies using 
process graphs and BSL. 

3.8 Design of Dynamk Distributed Systems 

The original PARSE process graph notation only supports dynamic process creation in a very 
limited manner, through the use of process object replication. However, for many applications for 
distributed computing platforms, this level of design specification is insufficient. We have therefore 
extended the core notation to cater for dynamic process object and communications path creation, 
and subsequent destruction. The extensions are currently being utilised and evaluated in the design 
of distributed interactive multimedia applications, with encouraging results. 

3.9 Case Studies and Industrial Trials 

In order to validate the PARSE approach, the methodology bas been applied to a number of 
significant software developments, including a parallel logic language run-time support system, a 
database engine and a transport protocol for high speed networks. More recently the PARSE 
design method and process graph notation bas been used in the development of an industrial real 
time embedded control system. Combined with the client-server modelling techniques it proved to 
be an effective and efficient method of construction deadlock free, concurrent software. In addition 
the notation was found to support team working by providing accessible design documentation. 



www.manaraa.com

The PARSE project 275 

3 FUTURE DIRECTIONS 

The following areas are currently under investigation: 
Performance prediction: The development of appropriate simulation tools to support early 
performance prediction is under investigation. This work will complement the performance 
evaluation techniques available within the PARSE-EPOCA integration. 
Client-server modelling: Future work is planned which will consider the application of these 
design techniques to a wide range of realistically sized systems. We shall explore the relationship 
with formal modelling techniques with a view to providing automated support for design 
verification within which the state explosion problem can be controlled. 
High-level design abstractions: We are looking to develop high-level design templates that 
designers can reuse in different applications. 
Designing for distributed object systems: Software development techniques for distributed 
systems has lead to the definition of different common object co-ordination models to support 
interaction between objects. We are looking at high level design techniques which allow designers 
to use these common object models in a secure and effective manner. 
Training in parallel and distributed design practice: We are exploring the introduction of the 
high level design techniques developed during the PARSE project into both academic curricula and 
industrial training courses. 

4 SUMMARY AND COLLABORATION OPPORTUNITIES 

The PARSE project currently involves academic staff and students in a number of institutions and 
industrial partners. It is an open collaboration aimed at providing a forum for exploration of issues 
relating to parallel and distributed software development. The intention is to support a number of 
research directions within the project framework, building on existing co-operation to ensure that 
the high quality of the work is maintained. 

We welcome further collaboration - both academic and industrial. We believe that there is a 
growing range of applications which demand the use of the type of techniques we have been 
investigating, and we are keen to explore their use in the development of real systems. More 
information can be found on the PARSE Web Page: http://www.dcs.shef.ac.uk/-prc/parse.html 

5 PARSE BIBLIOGRAPHY 

5.1 Selected Journal and Conference Papers 

Gorton, 1., Jelly, I.E. and Gray, J P (1993) PARSE: A Software Engineering Methodology for Parallel 
Program Design, in Proc IEEE lnt Parallel Processing Symposium, April 1993, Newport Beach, 
CA, USA, IEEE Press 

Donatelli, S., Franceschinis, G., Mazzocca, N. and Russo, S. (1994) Software Architecture of the 
EPOCA Integrated Environment in Proc 7th lnt Conf on Modelling Techniques and Tools for 
Computer Performance Evaluation, May 1994, Vienna, Austria, Springer Verlag LNCS 794, pp 
335-352, 



www.manaraa.com

276 Part Two Project Reviews 

Jelly, I.E. and Gorton, I. (1994) Software Engineering for Parallel Systems in lnfornzation and 
Software Technology Journal, Vol. 36, No 7, pp 381-396 

Knowles, C. and Collingwood, P. (1994) Parallel Software Development using an Object-Oriented 
Modelling Technique in Information and S~ftware Technology Journal, Vol. 36, No 7, pp 397-404, 

Gorton 1., Jelly, I.E. and Chan, T.S. (1994) Engineering High Quality Parallel Software Using PARSE 
in Proc CONPAR, September 1994, Linz, Austria, Springer Verlag LNCS, pp 381-392 

Birkinshaw, C.I. and Croll, P.R. (1995) Modelling the Client-Server Behaviour of Parallel Real-Time 
Systems Using Petri Nets" in Proc HICSS-28, (Hawaiian International Conference on System 
Sciences), January 1995, Maui, Hawaii, USA, IEEE Computer Society Press Vol. II, pp 339-348 

Gorton, I., Jelly, I.E., Croll, P.R. and Nixon, P. (1995) Directions in Software Engineering for Parallel 
Systems in Proc HICSS-28 (Hawaiian International Conference on System Sciences) January 1995, 
Maui, Hawaii, USA, IEEE Computer Society 

Gorton, 1., Jelly, I.E. and Gray, J P. (1995) Object Based Modelling of Parallel Programs in IEEE 
Parallel and Distributed Technology Journal, Vol. 3, No.2, 1995, IEEE Computer Society Press 

Lloyd D.W., Jelly, I.E. and Cai, J. (1995) Evaluation of PARSE for High Level Codesign 
Specifications in Proc /CRAM '95 (lnt Conf on Recent Advances in Mechatronics), August 1995, 
Istanbul, Turkey 

Jelly, I.E., Croll, P.R., Birkinshaw, C.I. and Gorton, I. (1995) Client-Server Behaviour Modelling in 
PARSE in Proc Euromicro '95 Conference, Como, Italy, September 1995, IEEE Computer Society 
Press 

Knowles, C., Jelly I.E. and Collingwood, P.C. (1995) Evaluation of Software Engineering Analysis 
Techniques for Parallel Software in Proc Euromicro 95 Conference, Como, Italy, September 1995, 
IEEE Computer Society Press 

Jelly, I.E. and Gorton, I. (1995) Directions in CASE Technology for Parallel Software Development in 
Transputer Communications Journal, Vol. 3. No. I, pp 

Liu, A. and Gorton, I. (1996) Modelling Dynamic Distributed System Structures in PARSE in Proc 4th 
European Workshop on Parallel and Distributed Processing, January 1996, Braga, Portugal, IEEE 
Computer Society Press 

Gorton, I., Jelly, I.E., Gray, J.P. and Chan, T.S. (1996) Reliable Parallel Software Construction using 
PARSE to appear in Concurrency: Practice and Experience Journal 

Sadler, D.R., Lloyd, D.W. and Jelly, I.E. (1996) Object Based Hardware/Software Co-design to 
appear in Proc IEEE Int Conference on Computers and Communications, March 1996, Phoenix, 
USA, IEEE Computer Society Press 

5.2 Workshop Proceedings 

Workshop on "Software Engineering for Parallel Systems", Aachen, Germany, September 1993. 
Selected papers published in special edition of Information and Software Technology Joumal, Vol. 
36, No.7, 1994. Guest editors, I.E. Jelly,l. Gorton and J.P. Gray 

Workshop on "CASE Technology for Parallel Systems Development", Como, Italy, September 1994. 
Selected papers in special edition of Transputer Communication Journal, Vol. 3, No. I (1995). Guest 
editors, I. E. Jelly and I. Gorton 

Mini-track on "Software Engineering for Parallel Systems", in Proc HICSS-28 (Hawaiian International 
Conference on System Sciences), January 1995, Maui, Hawaii, USA, IEEE Computer Society 1995. 
Co-ordinators: I. Gorton, I. E. Jelly, P.R. Croll and P. Nixon 



www.manaraa.com

25 
The AL++ project: 
object-oriented parallel programming 
on multicomputers 

M Di Santo, F Frattolillo, W Russo and E. Zimeo • 
University of Salerno- *University of Napoli, Italy 
Fax: + 3 9 89 9645 7 4 - E-mail: disanto@dia. unisa. it 

Abstract 
AL++ is a software system which combines high-level object-oriented facilities with the sim
plicity, flexibility and power of the Actor computational model. AL++ lets programmers de
velop C++ parallel applications and run them on multicomputer platforms. 

Keywords 
Parallelism, Multicomputers, Actors, C++, Object-oriented parallel programming 

PROJECT AIMS 

Object-oriented programming models provide an attractive base for developing parallel pro
gramming systems. In fact, they promote the effective application of modern software engi
neering techniques, which have already proven to be successful in developing complex and 
large-scale sequential applications. Moreover, thanks to the dynamic creation and reconfigura
tion of objects, they also support applications whose computational structures can not be stati
cally determined and facilitate decisions about object placement and migration, by aggregating 
data and code into single semantic units. In short, object-oriented parallel models seem to offer 
the expressiveness and the efficiency which are needed to effectively harness the computational 
power of modern, distributed-memory multicomputers. 

Among the object-based models of parallel computation, Actors (Agha, 1986) is the best 
known. It can be classified as a partly abstract model based on process nets (Skillicorn, 1993) 
which allows computations to be specified without restricting their form. The Actor model has 
recently become the basis for a number of parallel object-oriented programming languages, 
such as ABCL (Yonezawa, 1990), CA (Chen, 1993) and HAL (Agha, 1992), even though it 
still has to establish itself as a practical tool for the development of parallel software. This is 
due to the difficulties encountered in turning the model into a truly general-purpose, object
oriented parallel programming language, to the scarcity of efficient implementations and to the 

2 



www.manaraa.com

278 Part Two Project Reviews 

limited experience for significant applications. In conclusion, the object-oriented approach, 
particularly if based on the Actor model, is well-suited for structuring parallel activities, but 
many further research and implementation efforts are needed in order to provide parallel pro
grammers with elegant language ideas efficiently implemented on existing hardware. 

These considerations have motivated the AL++ project which began in 1990 as one of the 
research proposals to be developed within the national project "Progetto Finalizzato Sistemi 
Informatici e Calcolo Parallelo, sottoprogetto Architetture Parallele", sponsored by the Na
tional Research Council (CNR) of Italy. Part of the research activities were also developed 
within the project "Architetture Convenzionali e Non Convenzionali per Sistemi Distribuiti" 
sponsored by the MURST (Ministero deii'Universit e della Ricerca Scientifica e Tecnologica). 

The AL++ project aims at developing a programming system characterized by the following 
requirements: (a) to provide programmers with elegant and simple mechanisms to develop ob
ject-oriented parallel applications on distributed-memory architectures; (b) to enable applica
tion code to be independent of underlying hardware/software platforms; (c) to achieve a 
modular implementation of the programming system so that it can be ported on new hardware 
with a reasonable effort. 

2 KEY RESEARCH ISSUES AND ACHIEVEMENTS 

Since the design and implementation of a new language is an expensive activity, the simpler 
approach of embedding Actor concepts and primitives into a widespread sequential program
ming language has been followed. In particular, the main achievement of the project has been 
AL t +, a semantic extension of C++, implemented through a class library which provides an 
object-oriented interface for actor programming. The choice of C++ has been motivated by its 
availability and popularity with programmers. Another motivation is that C++ is efficiently im
plemented with a minimum of run-time support on all the architectures of major interest. 

2.1 The actor model 

Actors are objects which manifest a pure reactive nature and interact with other actors only via 
message passing. They unify both data and code in local states, called behaviors, and are dy
namically created and referred through system-wide identifiers, called mail addresses 

The communication mechanism is point-to-point, asynchronous and one-directional. Be
cause mail addresses may be transmitted via messages, the actor-net which shows the potential 
flow of information may dynamically change. Messages are guaranteed to be delivered to their 
destinations, but transmission order is not necessarily preserved at delivery. Incoming messages 
are buffered into unbounded queues associated to receiving actors, before being serially proc
essed. Functional interactions among actors are modeled with the use of continuations; that is 
an actor, instead of returning a result, sends it to a continuation actor that it knows about. 

The processing of a message triggers the execution of the actor script, the code in the be
havior of the receiver. During this processing, new actors can be created, messages asynchro
nously sent and the current behavior substituted by a new one (replacement behavior). In 
practice, replacements implement local state changes which can span from simple updates in 
the values of state variables to radical changes in the set of state variables and in the script. 

2 The AL++ interface 

AL ++ enables programmers to exploit software engineering techniques in modeling parallel 



www.manaraa.com

The AL + + project 279 

applications. In fact, AL++ joins C++ object-oriented powerful facilities, such as data abstrac
tion, multiple inheritance, overloading and dynamic binding, with the clear, simple and flexible 
mechanisms provided by the Actor model. Moreover, thanks to the support for automatic and 
dynamic resource management, programmers can design AL++ programs as ideal algorithms, 
without having to specifY allocation strategies or other programming details which make them 
depending on specific hardware platforms and network topologies. 

AL++ supports the SPMD (Single Program Multiple Data) computational model; therefore, 
each node in the system stores and runs the same program; data, on the contrary, is distributed 
among all the nodes. The library makes available all the basic abstractions and primitives of the 
Actor model. Messages and behaviors are dynamically created instances of user classes re
spectively derived by the library classes Message and Behavior, while mail addresses are in
stances of the library class Mai/Address. Actors are dynamically created by invoking the mem
ber function Mai/Address: :create. The behavior of the new actor can be specified at the crea
tion time or later, by invoking the member function Mai/Address::init. In the latter case it is 
possible to create actors whose behaviors mutually refer. 

The Message class defines all the communication and message management primitives as its 
member functions. In particular, Message::send sends a message to a target actor, while Mes
sage::request associates to the sent message the identity of a continuation actor, which will be 
used as the implicit destination ofthe result when the target actor executesMessage::reply. 

Each user class derived from Behavior must include the local data as its data members and 
define the pure virtual member function script, which accepts the message to be processed as 
an argument. In many cases the script selects, on the basis of the tag associated to the message 
and returned by Message::type, the appropriate method and invokes it. Behavior::hecome 
permits to specifY the actor replacement behavior, while Behavior::self returns the mail ad
dress of the current actor. 

AL++ enables to control the dynamic placement of actors in two ways: (I) automatically, by 
employing one of the dynamic load balancing strategies integrated into the runtime support: 
random, ACWN (Shu, 1989) and PWFA (Di Santo, 1995, in preparation); (2) in a programmed 
way, by utilizing some primitives which allow both to specifY the node on which an actor is to 
be created and to migrate actors according to the computation load at run-time. Moreover, 
immutable actors may be duplicated and "garbage" actors explicitly deallocated. 

2.3 Implementation issues 

The AL++ interface is built on top of a runtime support, called ASK (Actor System Kernel), 
which has been designed so as to fully exploit the power of the underlying hardware, and to be 
flexible enough to represent a stable basis for further enhancements. A working prototype of 
the kernel has been developed for Transputer networks. 

To make the kernel portable to different hardware/software platforms and independent of 
network characteristics, it is built on top of a low-level interface which consists of two compo
nents: an abstract node environment, providing each node with facilities for running concur
rent threads which interact through some shared-memory mechanism (semaphores or equiva
lent), and an abstract network environment, providing node-to-node asynchronous communi
cation primitives and taking charge of performing routing between non-adjacent nodes and of 
buffering incoming messages. 

An instance of the kernel, consisting of a few threads implementing system processes, is 
present on each node. One of these threads is the scheduler which cyclically schedules a local 
actor and processes messages in its mail queue; it is worth noting that the processing of a mes
sage can not be suspended and, therefore, once started, proceeds till its completion. Another 



www.manaraa.com

280 Part Two Project Reviews 

thread is the server which carries out the remote requests as though they were issued locally. 
Mail addresses are represented with global identifiers generated according to a completely 

distributed scheme that does not introduce overhead. The identifiers are then translated into 
physical addresses by a lookup table that returns either a local memory address, or a node 
identifier, according to the physical allocation of actors. In the latter case, a system message is 
sent to that node, and a new access to the lookup table is performed upon arrival. 

Migration can be implemented quite cheaply in an actor based system. In ASK all the steps 
needed are fully asynchronous and so, while the actor migration proceeds on a node, other ac
tivities allocated on the same node have not to wait, but they are allowed to do useful work. 
Migration times are therefore masked by the resulting parallel execution of system threads, and 
they only affect the response time of the messages in the queue of the migrating actor. The mi
gration procedure has been adopted as a basis to implement the remote creation primitive. In 
fact, an actor is always locally created and only then asynchronously migrated to its remote 
destination. This mechanism permits to minimize the time spent for an actor creation and to 
maximize the locality of data references in the first phase of actor existence. 

2.4 Performances 

The prototype implementation of ASK has been developed in the 3L Parallel C programming 
environment, and runs on a network of sixteen T800, clocked at 20 MHz, with links at 20 
Mbits/s. Two versions of the network environment (NE) are available, respectively for ring
connected and 2D-torus networks. 

Table I shows execution times of the four basic AL ++ primitives (creation of a new actor, 
assignment of an initial behavior to a new actor, sending of a void message and replacement of 
the current behavior) in the case of purely local execution. 

Table I Local execution of some AL++ primitives (jts) 

create init send become 
39 54 223 65 

Table 2 shows execution times of the send primitive as a function of the distance in hops of 
the target node. The table also reports the overall amount of time spent in the NE. The execu
tion time of a remote create is constantly equal to 71 J.l.S, in that ASK always performs a local 
creation asynchronously followed by a migration of the actor. 

Table 2 Remote execution of the send primitive (,us) 

1 hop 2 hops 3 hops 4 hops 5 hops 6 hops 7 hops 8 hops 
send(NE) 382(113) 466(177) 535(240) 604(305) 690(368) 771(432) 854(496) 920(583) 

2.5 Bibliography 

In the following we provide a list of the AL++ key publications written in English: 

Arcelli F., De Santo M., Di Santo M. and Picariello A. (1993) Computer Vision Applications 
Experience with Actors, PARLE '93, 14-18 June 1993, Munich (Germany), LNCS 694, 
Springer-Verlag, Berlin (Germany). 

Di Santo M. and Iannello G. (1990) ASK: A Kernel for Programming Actor Systems, Procs. 
of the 1990 ACM SigSmal/IPC Symposium on Small Systems, ACM Press. 

DiSanto M. and Iannello G. (1991) Implementing actor-based primitives on distributed mem-



www.manaraa.com

The AL + + project 281 

ory architectures, Procs. ECOOP-OOPSLA Workshop on Object-Based Concurrent Pro
gramming, 21-22 Oct. 1990, Ottawa (Canada), OOPS Messenger 2(2), ACM Press. 

Di Santo M. and Iannello G. (1992) Implementation of dynamic languages on multicomputer 
architectures, in Parallel Computing: Problems. Methods and Applications ( eds. Messina 
P. and Murli A.), Elsevier, Amsterdam (Nederland), selection of papers presented at the 
Conference on Parallel Computing: Achievements, Problems and Prospects, 3-1 June 
1990, Capri (Italy). 

Di Santo M., Iannello G. and RussoW. (1992) ASK: a Transputer implementation of the Ac
tor model, Jnt'l Conj on Parallel Computing and Transputers Applications, 21-25 Sept. 
1992, Barcelona (Spain), lOS Press, Amsterdam (Nederland). 

Di Santo M., Frattolillo F. and Iannello G. (1992) Actor System Kernel (ASK) 4.0. Introduc
tion and User Guide. Tech. Rep. n. 3/108, CNR Progetto Finalizzato Sistemi Informatici e 
Calcolo Parallelo. 

Di Santo M., Frattolillo F. and Iannello G. (1994) Run-time support for highly parallel algo
rithms on multicomputer architectures, Tech. Rep. n. 3/139, CNR Progetto Finalizzato Si
stemi Informatici e Calcolo Parallelo. 

Di Santo M., Frattolillo F. and Iannello G. (1995) Experiences in Dynamic Placement of Ac
tors on Multicomputer Systems, Proceedings Euromicro Workshop on Parallel and Dis
tributed Processing, San Remo 25-27 Jan. 1995 (Italy), IEEE Computer Society Press. 

Di Santo M. and Iannello G. (1995) Actor Models, in General Purpose Parallel Computers: 
Architectures, Programming Environments and Tools (eds. Balbo G. and Vanneschi M.), 
Edizioni ETS, Pisa (Italy). 

Di Santo M., Frattolillo F., RussoW. and Zimeo E. (1995) A Dynamic Load Balancing for 
Object-Based Computations on Multicomputers, in preparation. 

3 FUTURE DIRECTIONS 

The AL ++ project is still alive and we want to utilize the experiences accumulated since its 
start in order to globally redesign both its interface and implementation. Precisely, at the inter
face level, we will proceed to substitute C++ with the new object-oriented language Java 
(Gosling, 1995) which will offer the advantages of being, according to its authors: (i) simple 
and familiar; (ii) architecture neutral, portable and robust; (iii) interpreted, dynamic, secure and 
multi-threaded; (iv) efficient and equipped with extensive and well developed class libraries. 
Moreover, we will complete the programming interface with mechanisms for expressing local 
.\ynchronization constraints, which permit to delay the processing of messages until they are 
"serviceable", and grouping of actors, which permit to express data parallelism, to support 
broadcast communication and to implement distributed objects. 
On the other hand, at the implementation level, we will move our environment to a network of 
workstations equipped with PVM (Geist, 1992), which nowadays have proven to offer viable 
and cost-effective platforms for parallel computing in many application domains. Moreover, we 
will design and implement new mechanisms for explicit and automatic resource management at 
runtime: among these we will include new algorithms for dynamic placement and distributed 
garbage collection of actors. 

4 ACKNOWLEDGNrnNTS 

The AL++ project has been partially supported by CNR, under funds of"Progetto Finalizzato 



www.manaraa.com

282 Part Two Project Reviews 

Sistemi Informatici e Calcolo Parallelo", and by MURST, under funds 60% and 40% 
"Architetture Convenzionali e Non Convenzionali per Sistemi Distribuiti". 

In addition to the authors, Giulio Iannello of the University of Napoli "Federico II" has 
contributed to the project. 

We gratefully acknowledge Gul Agha of the University of Illinois at Urbana-Champaign for 
inspiring our work and providing insights into the Actor model and its implementation. 

5 REFERENCES 

Agha G. (1986) Actors: A Model of Concurrent Computation in Distributed Systems. The 
MIT Press. 

Agha G. and Houck C. (1992) HAL: A High-level Actor Language and Its Distributed Imple
mentation, Proceedings of the 21st International Conference on Parallel Processing (ICPP 
'92), Aug. 1992, St. Charles (IL - USA). 

Chien A. (1993) Concurrent Aggregates: Supporting Modularity in Massively Parallel Pro
grams. The MIT Press. 

Geist G. A. and Sunderam V. S. (1992) Network-Based Concurrent Computing on the PVM 
System, Concurrency: Practice and Experience, 4(4). 

Gosling J. and McGilton H. ( 1995) The Java Language Environment: a white paper, available 
at http://java.sun.com 

Shu W. and Kale L. V. (I 989) Dynamic scheduling of medium-grained processes on multi
computers, Tech. Rep., Dep. of Computer Science, Univ. of Illinois at Urbana-Champaign. 

Skillicorn D. B. (I 993) Models for parallel computation, in Advanced workshop on Program
ming toolsfor parallel machines, 21-25 June 1993, Otranto (Italy). 

Y onezawa A. ( ed.) ( 1990) ABCL: An Object-Oriented Concurrent System. The MIT Press. 

6 BIOGRAPHIES 

Michele Di Santo is a professor of computer engineering at the University of Salerno, Italy. 
He received the degree in electronic engineering, cum laude, from the University of Napoli and 
worked at the University of Napoli and the University of Calabria. His scientific interests in
clude programming languages and environments for parallel and distributed systems. He is a 
member of ACM and IEEE Computer Society. 

Franco Frattolillo is a faculty member at the "Dipartimento di Ingegneria dell'Informazione e 
Ingegneria Elettrica" of the University of Salerno, Italy. He received the degree in electronic 
engineering, cum laude, from the University of Napoli. His research interests include parallel 
and distributed architectures and programming environments for parallelism. 

Wilma Russo is an associate professor of computer engineering at the University of Salerno, 
Italy. She received the degree in physics, cum laude, from the University of Napoli and worked 
at the University of Calabria. Her scientific interests include programming languages and envi
ronments for parallel and distributed systems. 

Eugenio Zimeo holds a scholarship from CNR at the University of Napoli, Italy. He received 
the degree in electronic engineering, cum laude, from the University of Salerno. His research 
interests include parallel and distributed architectures and programming environments for paral
lelism. 



www.manaraa.com

26 
The Basel Tool Suite for Parallel 
Processing 

H. Burkhart, N. Fang, R. Frank, G. Hiichler, W. Kuhn, and G. Pret6t 
Universitiit Basel 
Institut fur lnformatik, Mittlere Strasse 142, CH-4056 Basel, 
Switzerland. 
Telephone: +41-61 321 99 67 Fax: +41-61 321 99 15 
email: burkhart~ifi. unibas. ch 

Abstract 
The Basel approach is characterized by a coordinated set of subprojects that use the 
same basic terminology but target for different goals. Emphasis is put on software engi
neering aspects such as increased programmability, portability, and interoperability. This 
integrated approach has benefits because different user groups (application programmers, 
performance analysts, students) can interact and profit from synergies by using common 
system elements. The Basel Tool Suite (developed at PUB*) currently consists of 

• ALWAN, the language used for writing algorithmic skeletons, offering reuse-in-the
small constructs, and its compiler which produces portable source code skeletons for 
different target systems and programming languages. 

• PEMPI, a library-based environment supporting structured parallel programming for 
the MPI message passing standard. 

• ALPSTONE, a methodology and environment to make performance prediction and 
algorithmic benchmarking on different target architectures. 

Prototypes for all components exist and are used in courses at the University. Public 
domain versions of this software are envisaged; potential users should contact the group. 

Keywords 
software engineering for parallel and distributed systems; structured parallel program
ming; mixed language programming; portability; MPI support; performance prediction; 
algorithmic benchmarking; parallelism courseware. 

*Parallel laboratory, University of Basel 



www.manaraa.com

284 Part Two Project Reviews 

1 ALWAN :A PARALLEL COORDINATION LANGUAGE 

ALWAN is a parallel language and programming environment developed at PUB. The 
design goals of ALWAN are to increase the programmability of parallel applications, 
enable performance portability, support the reuse of software components, and mixed
language programming. Parallel programs consist of (sequential) calculation and (par
allel) coordination parts. To address the major difficulties in parallel programming, the 
ALWAN language provides high level constructs for the description of parallel coordi
nation aspects such as data partitioning and distribution, process topology management 
and communication aspects. As ALWAN is intended to specify only the coordination of 
an algorithm, it provides an interface to other, widely used, sequential languages, such as 
C and FORTRAN. Coordination skeletons and sequential building blocks are processed 
by the programming environment (ALWAN compiler and support libraries) which can 
automatically generate programs for various parallel architectures. 

Approach 

Program development within the ALWAN environment is outlined in the figure below 
to which the Roman numerals refer. 

Figure 1 system overview 

A coordination description (I) written in ALWAN is transformed into a source code 
skeleton (IV) using the ALWAN compiler (III) . Predefined ALWAN modules, where 
frequently used topologies or routines are collected, may be imported and re-used (II). 
Procedures declared as EXTERNAL define the interface to code written in other (sequen
tial) languages (V). The high-level parallel coordination constructs are translated into 
ALWAN library (VI) calls with appropriate parameters. This library is implemented for 
various machines, interfacing to the virtual machine layers available on the given plat
form. Finally, all code parts are compiled (VII) and linked to form an executable program 
(VIII). Porting to a different platform only requires a recompilation on the target ma
chine, thus replacing the ALWAN library with the appropriate new one. Compilation of 
the different source parts (I, IV, and V) and linking to the appropriate libraries (II and 
VI) is handled by a shell script and generated make files. 



www.manaraa.com

The Basel Tool Suite for parallel processing 285 

Status and Future Work 

The ALWAN compiler is implemented on various UNIX platforms. The full set of library 
routines has been implemented for PVM. To prove the feasibility of our approach, an 
intermediate version (no support of collective communication, inhomogeneous data, asyn
chronous communication, and run time checks} was implemented for PVM, MPI, CMMD, 
and NX and tested on CM5, SP1, Paragon and a workstation cluster containing NeXT 
and Sun workstations. The compiler supports mixed-language programming in that the 
external routines may be written in either Cor FORTRAN 77. 

A full ALWAN implementation for PVM and MPI will be available in the first quar
ter of 1996. Further implementations will follow and include support for virtual shared 
memory systems. 

The ALWAN tool suite is currently used within different projects: ALWAN is used 
within the ALPSTONE performance prediction environment (described in section 3). 
A library of sample parallel algorithms was built to be used as teachware. This library 
contains matrix multiplication variants and stencil algorithms (both using a torus topol
ogy), bitonic sort using a hypercube topology, divide and conquer sort on a tree, gaussian 
elimination and transitive closure of graph (Warshall algorithm} both on a farm. Other 
members of the laboratory use ALWAN to solve application problems (CFD code; image 
processing for computer-aided surgery). Another project extends ALWAN to support the 
creation of parallel services for industry standard client server environments. 

Contact Person: Robert Frank and Guido Hii.chler ({frankjhaechler}@ifi.unibas.ch) 
Home Page :http:/ fwww.ifi.unibas.ch;-alwan 
Reference : Burkhart, H., Frank, R. and Hii.chler, G. (1996} Structured Parallel 

Programming: How Informatics Can Help Overcome the Software 
Dilemma. To appear in Scientific Progmmming, 1996. 

2 PEMPI : PROGRAMMING ENVIRONMENT FOR THE 
MESSAGE PASSING INTERFACE 

The PEMPI project helps the programmer in writing message passing programs by using 
higher abstraction functions and supporting tools. It aims to achieve three goals in a 
unified approach: obtain portability by employing the MPI standard, achieve performance 
through the machine best-fit implementation, and increase progmmmability by exploiting 
higher abstmctions and taking advantage of supporting tools. 
As a design feature, PEMPI allows the application programmer to work within the 
context of the higher-level functions to solve regular problems but also to jump into 
the system level, i.e., MPI level, to solve irregular or performance-critical problems if 
necessary. 

Architecture and Functionality 

PEMPI is a two-layer architecture: Kernel PEMPI (KPEMPI) and Outer PEMPI 
(OPEMPI), as Figure 2 shows. Kernel PEMPI contains the higher abstraction library 
based on MPI, which can be further divided into three modules: (1} Process Manage-



www.manaraa.com

286 Part Two Project Reviews 

KPI!MPI 

Figure 2 PEMPI Two-layer Structure 

ment Module: containing functions to build process topologies such as a tree or hyper
cube besides the topologies supported in MPI, and functions to access topology infor
mation; (2) Data Management Module: containing functions to input/output and dis
tribute/collect data according to the layout of the data partition which is specified by 
the programmer as well as functions structuring commonly-used data components be
fore they are sent/received; (3) Communication Management Module: containing some 
topology-specific communication routines. 

Auxiliary functions such as index conversion (global to local and reverse) of distributed 
data are also supported. 

Outer PEMPI consists of a collection of tools: (1) a dialog-driven programming inter
face: a template generator with GUI is used to generate code related to process topology 
creation, data layout specification, data 1/0 and distribution/collection etc; (2) a text 
editor; (3) target system utilities: including a compiler, linker and debugger; (4) toolkits: 
e.g. for automatically converting C structs and unions to MPI Datatypes. 

Status and Future Work 

KPEMPI has been implemented and has partially been tested and ported to the IBM 
SP-2 at Argonne National Laboratory and the Fujitsu APlOOO at Imperial College of Sci
ence, Technology and Medicine/Fujitsu Parallel Computing Research Center, University 
of London. The prototype of OPEMPI is still under construction using the NEXTSTEP 
utilities Project Builder and Interface Builder. 

Future work includes: (1) implementing the full OPEMPI prototype using NEXTSTEP; 
(2) porting KPEMPI to other parallel machines; (3) implementing sample parallel algo
rithms in PEMPI and also real-world applications such as CFD, image processing, etc; 
(4) porting OPEMPI to other user interfaces, e.g., OSF /Motif; (5) detailed analysis of 
performance loss caused by abstraction on different parallel machines and optimization 
of the code. 



www.manaraa.com

The Basel Tool Suite for parallel processing 287 

Contact Person : Niandong Fang (fang@ifi.unibas.ch) 
Home Page : http:/ fwww.ifi.unibas.ch;-pempi 
Reference :Fang, N. and Burkhart, H. (1994) PEMPI-From MPI Standard to 

Programming Environment. Proceedings of Scalable Parallel 
Libraries Conference II {SPLC'94}, 31-38, Mississippi. 

3 ALPSTONE : PREDICTION INCREASES PRODUCTIVITY 

Beside correctness, portability, and reusability, efficiency is one of the most important 
questions to be answered when developing software for a parallel system. However, de
veloping a program, running it and finding out that it is too slow is a bad approach. 
We need an early estimation of a program's performance to increase the programmer's 
productivity. 

ALPSTONE's methodology guides a skeleton programmer in going from a formal de
scription of an algorithm to a finished program from the point of view of performance 
studies and supplies an experimental algorithm performance test bed. Techniques included 
are benchmarking and performance prediction. Fig.3 shows an overview of the architec
ture. 

Approach and architecture 

Early in the software engineering phases, a parallel program is modeled by a macroscopic 
abstraction (I) containing program properties such as process topology, execution struc
ture, data descriptions, I/0 behaviour, and interaction specifications. This information 
may be refined during the software engineering process where necessary. 

The Extractor (II) now derives a time model and may (later) generate a rudimen
tary, instrumented skeleton program (e.g. ALWAN or PEMPI). The user has to supply 
additional information, e.g. code for a local computation or refinements of the skeleton. 

The generated time model predicts the program performance in terms of the abstraction. 
The Estimator (III) supports the performance prediction steps through the whole soft
ware engineering cycle by calculating the model's runtime and supporting its refinement. 
The estimator detects idle times or allows the overlapping of computation and interac
tion. Other information is available as well, such as the amount of certain operations or 
transferred data. Statistical models for runtimes and the modelling of an inhomogeneous 
system are supported. In order to be as accurate as possible, a library of performance 
data representing topology creation, data distribution times, etc is mandatory (VI). 

If the prediction promises good performance, program implementation and translation 
language will follow (IV). Otherwise, modifications will be done. This early detection 
of performance faults is important as this is where programmer productivity can be in
creased. 

After having run an instrumented program, an Analyzer (V) stores measurements (for 
reuse in other estimations) in the performance database. Of course, comparing the pre
dicted and measured runtime is of interest. 

The ALP STONE benchmark suite (VI) supplies the estimator with data from selected 
benchmarks. We include some well known codes, but define some new benchmarks as well. 



www.manaraa.com

288 Part Two Project Reviews 

The approach is hierarchical because the building blocks of a parallel program will often be 
found in complex routines composed of actions from the lower levels, in that way detailed 
measurements of building "blocks" may refine first estimations based on the "base" level. 
The suite is vertically structured using the basic properties modeled in the performance 
skeletons. 

Figure 3 An overview of the ALPSTONE environment 

Status and future work 

First case studies showed that it is worth integrating performance studies in the soft
ware engineering cycle while formulating an outline of a program. Today, most of the 
macroscopic specification and test cases are defined. The ALPSTONE benchmark suite 
is specified in three layers and most benchmarks are implemented on several machines. 
The Extractor is currently realized using a compiler toolbox. The Estimator, defined as 
a layered system, and the Analyzer are running in the Mathematica environment on a 
subset of the generated models. Finally, an instrumentation library has been written in 
C. 

We will finish the implementation, port our benchmarks to different systems and predict 
more skeletons in the next steps. Directions where ALPSTONE can be used or extended 
are: a suitability study of algorithms on different architectures, a support for load balanc
ing strategies, the improvement of the estimation for network resources, or studying the 
behaviour of implementation strategies without the need of accessing a parallel system. 

Contact Person : Walter Kuhn (kuhn@ifi.unibas.ch) 
Home Page :http:/ jwww.ifi.unibas.chralpstone 
Reference : Kuhn, W. and Burkhart,H. (1995) The ALPSTONE project: An Over-

view of a Performance Modeling Environment. Proceedings of the Con
ference on High Performance Computing (HiPC'95), New Delhi, 1995. 



www.manaraa.com

PART THREE 

Demonstrations 



www.manaraa.com

27 

Development Framework for real-time 
control system design 

J. M. Bass t, A. R. Browne t, M. S. Hajji t, P. R. Crott* 
and P. J. Fleming t 
t Dept. of Automatic Control and Systems Engineering, 
:t Dept. of Computer Science, University of Sheffield, Mappin Street, 
Sheffield, S1 3JD, UK. Tel. +.44 (0)114 282 5236, 
Fax. + 44 (0)114 273 1729, E-mail: J.Bass@sheffield.ac.uk 

Abstract 
The Development Framework provides a highly automated translation from a specification to 
a parallel implementation. The specification is in a popular graphical control engineering 
notation, typically representing a system with stringent dependability requirements and hard 
real-time constraints. An interface has been constructed between the Development Frame
work and the dependability modelling tool, SURF-2. The demonstration will illustrate the 
Development Framework design approach using a primary flight control Case Study. The 
example application consists of a three channel autopilot and airframe model. Dependability 
models of competing autopilot architectures will be contrasted in the demonstration. 

Keywords 
Computer-aided control system design, dependability modelling, computer-aided software 
engineering, real-time systems, distributed systems. 

1 INTRODUCTION 

The Development Framework, an environment to support the specification, design and im
plementation of real-time distributed computer control systems is described here. It is argued 
that both good design practice and fault-tolerance are required to ensure that stringent reli
ability targets are met. Distributed computer control systems have the advantage that redun
dant processing elements are available for use to provide fault-tolerance. 
The Framework, provides support for three phases in the development of the system under 
design. The Specification Phase, described in Section 2, allows the designer to specify, ana
lyse and simulate the control system under development. The Development Framework in
cludes tools that automatically translate the control engineering representation into a soft
ware engineering representation. The Software Design Phase uses a software engineering 
notation, described in Section 3, to enable analysis and refinement of the system under 
development. One type of analysis available to the developer is the generation of stochastic 
Petri net dependability models, described in Section 3-1. Further Development Framework 
tools translate the software engineering representation into source code that can be compiled 
into executable code for a network of processors. The resulting parallel implementation is 
discussed in Section 4. 



www.manaraa.com

292 Part Three Demonstrations 

The demonstration will use a Case Study to illustrate the Development Framework approach. 
The Case Study is not described in detail here, due to lack of space, but is introduced in 
Section 5. Conclusions are provided in Section 6. Further information regarding the Devel
opment Framework can be found in (Browne, 1994) and (Bass, 1994). 

The Development Framework addresses a similar problem area to the ControlH!MetaH 
design environment (Vestal, 1994). In common with the Framework, the ControlH!MetaH 
tools use an application-specific graphical specification notation and an intermediate soft
ware engineering notation. However, the Framework integrates commercially available tools 
using translators, while ControiH!MetaH is implemented entirely using purpose built tools. 
Further, the ControlH!MetaH environment does not provide facilities for dependability mod
elling. Detailed dependability modelling, without the benefits of system specification, design 
and implementation support, can be performed using Markov chains or stochastic activity 
networks. The SAVE environment uses a textual system description to provide dependability 
measures (Blum, 1993). In contrast, the UltraSAN environment provides a graphical inter
face based on stochastic activity networks (Sanders, 1993). The dependability modelling tool 
selected for this work, SURF-2, is Markov-based using stochastic Petri nets. 

The Development Framework approach encourages the designer to concentrate on the 
control engineering design aspects of the proposed system. This is achieved by providing a 
highly automated path from a control engineering specification to a distributed system im
plementation. Figure 1 shows the three phases supported by the Framework and the main 
benefits provided in each phase. The Development Framework provides an open architecture 
to encourage the designer to intervene at appropriate stages of the design lifecycle for the 
purposes of optimisation. 

2 SPECIFICATION PHASE 

The specification of software with the use of diagrams is seen as one of the main advantages 
of CASE systems. It is generally recognised that diagrams allow the representation of system 
structure in a much more accessible and natural form than written language or mathematics. 
Graphical notations have been developed that are appropriate for the specification of control 
systems and are used within the Development Framework. Therefore a control engineer 
should readily be able to understand the specification of a control system in such a notation. 
This would not generally be true if the design of the control system was in, for example, a 

Specification 
Pha5e 

Functional 
Simulation 

- Popular Notation 

- Simulation 

- Graphical ~pecification 

Functional Requirement Refinement 

Temporal Requirement Refinement 

Software 
De5ign 
Pha5e 

Temporal 
Simulation 

- Documentation 

I---+--+! Implementation 
Pha5e 

• Automatic code generation 

- Dependability Improvement • Software reu~e 

- Deadlock avoidance 

Figure 1 Development Framework overview. 



www.manaraa.com

Real-time control system design 293 

software engineering notation. Simulink was selected for the specification of real-time con
trol systems in the Development Framework because it: accommodates both continuous and 
discrete elements, and supports the hierarchical decomposition of diagrams enabling repre
sentation of complex control systems. Simulink supports modelling and simulation during 
control law design and is also used to provide a well documented mechanism for the specifi
cation of control systems. Simulation enables verification that the system meets requirements 
prior to implementation. The notation used by Simulink, in common with similar notations, 
was not designed to represent many of the features central to parallel and distributed sys
tems, however. The Software Design Phase is, therefore, implemented to enable deadlock 
analysis, mapping and, if required, dependability analysis and the introduction of fault-toler
ant mechanisms. 

3 SOFIW ARE DESIGN PHASE 

The most novel and powerful feature of the Development Framework is the automatic trans
lation of specifications, using an application-specific notation, into designs, using a general
ised software engineering notation. An equivalent dataflow diagram is created for each 
Simulink diagram within a model, and a data structure diagram is created for every connec
tion between blocks in each Simulink diagram. All functional blocks within the Simulink 
diagram (gains and transfer functions, for example) are converted into equivalent process 
symbols. Each Simulink inport/outport symbol is converted into an off-page connector, al
lowing processes and their decompositions to be linked. Thus, a complete description of the 
application system under design is maintained in the CASE tool. This complete description 
is required to allow the analysis, implementation and documentation of the proposed design. 

The Framework draws on the CSP message passing paradigm (Hoare, 1985). The mes
sage-passing approach of CSP provides an elegant platform for the development of such 
distributed systems. Dataflow diagrams are used to model concurrent processes and mes
sage-passing channels. CSP-based processes and communication channels are, thus, conven
iently modelled using CASE tools. The CASE tool environment, Software through Pictures 
(StP), was adopted for the Development Framework project because it: supports the well 
documented and widely known Yourdon methodology with Hatley/Pirbhai real-time exten
sions (Hatley, 1987); enables the generation and manipulation of diagrams with minimal user 
intervention; and has a flexible and extendible storage structure for specific information 

D Alternative 
Specification 

Notation 

Specification 
Phaee 

Software Deeign 
Phaee 

Figure 2 Development Framework tools. 

Implementation 
Phaee 



www.manaraa.com

294 Part Three Demonstrations 

about each object (diagram, process, data flow etc.) within the system. 
Tools to perform replication of selected processes, generation of hierarchical coloured 

Petri nets and to cluster processes have been implemented. These allow analysis or perform 
optimisations on the distributed system under development in the software engineering do
main. These optimisations can be performed with minimal intervention by the user. An ap
proach to generating dependability models of the system under development is described 
below. 

3-1 Stochastic Petri net tool 

Generalised stochastic Petri nets enable the evaluation of system safety and reliability meas
ures. The SURF-2 environment performs model processing based on graphical Petri net (or 
Markov chain) representations (Beounes, 1993). The SURF-2 Gateway, shown in Figure 3, 
supports automated generation of Petri nets from external software tools. The Framework 
stochastic Petri net tool analyses the system under development and translates the dataflow 
representation into a textual Petri net notation (Bass, 1995). Dependability models of se
lected fault-tolerant mechanisms are currently supported. Figure 4 shows typical translations 
for recovery block and n-version systems. The dependability models can be used to perform 
sensitivity analysis or contrast competing system architectures. 

4 IMPLEMENTATION PHASE 

A formalism is required in order to generate code from dataflow diagrams. Without this 
formalism there is no way of expressing the control of processes or the synchronisation of 
communications between them. The formalism represents each non-decomposed process 
symbol in the dataflow diagrams for a system as a separate process in the implementation. 
All these processes execute iteratively. In each iteration, the process: receives data from all 
input data flows; executes the functional code (transfer function or gain, for example); and 
sends data to all the output data flows. If a process has no input data flows the process waits 
for a signal from the process manager before executing the functional code. The process 
manager is a separate task responsible for the correct real-time operation of all the processes 
on a processor. 

The formalism used limits the prototype Framework to the specification, design and im-

Dataflow to GPSN 
T ranelation Algorithm 

Framework Information 
Interchange Lil>rary 

~---.I 
9 '"~'-

CASE Tool 
(Software through Pictures) 

MO<:Iel Deecrlptlon 
(Text Files) 

Figure 3 Development Framework to SURF-2 interface. 

Dependal>ility Modelling Tool 
(SURF·2) 



www.manaraa.com

Real-time control system design 295 

plementation of purely periodic systems. No concept of aperiodic tasks or events has yet 
been developed. All inter-process communication is strictly synchronous. The Framework 
currently produces source code in the language "C" for the Virtuoso real-time kernel execut
ing on a network of lnmos Transputers. Transputers provide a convenient platform for the 
CSP model and have found numerous applications in real-time control (Irwin, 1992). The 
Virtuoso kernel includes a flexible, reconfigurable, synchronous message passing system and 
a rate-monotonic scheduler which makes it particularly suitable for the Framework. 

The Framework code generator produces all the code required to compile, link and exe
cute the system. For each process within the system two source code files are produced, a 
harness code file, and an application code file. The harness file contains code that manages 
inter-process communication and communication with the process manager. It is automat
ically generated to match the needs of the process. The application code file contains the 
code for the functional part of the process e.g. transfer function or gain. This code is an 
expansion of a template taken from a library of reusable source code modules. The develop
ment of such a library reduces both the implementation time, by automatically reusing exist
ing code, and improves software reliability. The choice of a suitable library module for a 
process is performed automatically based on the number and type of input and output data 
flows and the type of routine (e.g. gain) that is required. This information is all stored within 
the CASE system when the control systems design is converted into data flow diagrams. 

Concurnnt Rccow::ry &lock S!Jb-.eyetem 

.... ...,.u 

Figure 4 Typical dataflow to stochastic Petri net translations. 



www.manaraa.com

296 Part Three Demonstrations 

5 CASE STUDY 

The software demonstration will use a primary flight control Case Study to illustrate the 
Development Framework design approach. The application consists of a generic three chan
nel autopilot and airframe model. 

6 CONCLUSIONS 

The prototype Development Framework described here enables a highly automatic transla
tion from an application-oriented system specification to an implementation executed on a 
parallel platform using a real-time kernel. In summary, the Framework approach offers a 
number of benefits. The system specification is in an application-oriented notation which can 
be simulated, to ensure correct functional behaviour, prior to implementation. Code re-use 
and automation of error-prone manual translations, reduce development time and increase 
confidence in implementation reliability. The open architecture provided by the Development 
Framework allows the addition of tools to address problems at different stages of the design 
lifecycle. 

7 ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the support of UK EPSRC (under grant number 
GRIK64310) and Intelligent Systems International, suppliers of the Virtuoso kernel. 

8 REFERENCES 

Bass, J. M., A. R. Browne, M.S. Hajji, D. G. Marriott, P.R. Croll and P. J. Fleming (1994), 
"Automating the Development of Distributed Control Software", IEEE Parallel and Dis
tributed Technology, Vol. 2, No.4, Winter 1994, pp. 9-19. 

Bass, J. M., S. Metge, P. R. Croll and P. J. Fleming (1995), "Dependability Modelling in a 
Prototype Development Framework", IEEE 25th Ann. Int. Symp. on Fault-Tolerant 
Computing Systems, Pasadena, June 1995, pp. 131-6. 

Beounes, C., et al (1993), "SURF-2: A program for Dependability Evaluation of Complex 
Hardware and Software Systems", Digest of Papers, IEEE 23rd Ann. Int. Symp. on 
Fault-Tolerant Computing Systems, Toulouse, June 1993, pp. 668-73. 

Blum A. M. et al, (1993), "System Availability Estimator (SAVE) Language Reference and 
User's Manual", Research Report RA219S, ffiM Research Division, T. J. Watson Re
search Centre, Yorktown Heights, N.J., June 1993. 

Browne, A. R., J. M. Bass, P. R. Croll and P. J. Fleming (1994), "A Prototype Framework 
of Design Tools for Computer-Aided Control Engineering", Joint IEEEIIFAC Symp. on 
Computer-Aided Control System Design, 1994, pp. 369-74. 

Hatley, D. J. and I. A. Pirbhai (1987), "Strategies for Real-Time System Specification", 
Dorset House Publishing Co. Inc. 

Hoare, C. A. R. (1985), "Communicating Sequential Processes", Prentice-Hall. 
Irwin, G. W. and P. J. Fleming (eds.) (1992), "Transputers in Real-Time Control", Research 

Studies Press. 
Sanders, W. H. and W. D. Obal ll (1993), "Dependability Evaluation using UltraSAN", 

Digest of Papers, IEEE 23rd Ann. Int. Symp. on Fault-Tolerant Computing Systems, 
Toulouse, June 1993, pp. 674-79. 

Vestal C., (1994), "Integrating Control and Software Views in a CACFJCASE Toolset", 
IEEEIIFAC Joint Symp. on Computer-Aided Control System Design, Tuscon, Arizona, 
March 1994, pp. 353-58. 



www.manaraa.com

28 

A Knowledge Based Approach to Parallel 
Software Engineering 

P. Milligan, P. P. Sage, P. J.P. McMullan and P. H. Corr 
The Queen's University of Belfast 
Department of Computer Science 
Belfast B17 INN 
N.lreland 
Tel: +44 1232 245133 Extn. 4645 
Fax: +44 1232 331232 
E-mail: p.milligan@qub.ac.uk 

Abstract 
Advances in technology have resulted in the development of many different multiprocessor 
systems. Unfortunately these have not been accompanied by advances in portable, user
friendly program development environments. This paper overviews the prototype of a 
development and migration environment for parallel software engineering which incorporates 
the application of knowledge based techniques to the core topics of loop restructuring, code 
generation and code evaluation. 

Keywords 
CASE environments and support tools; application of AI (expert system) techniques; 
autoparallelisation. 

1 INTRODUCTION 

In the past few years there has been a dramatic increase in the number of different 
multiprocessor systems in the marketplace. This development has provided the user with an 
increased potential processing power and an even wider range of parallel machine 
architectures. However, this increase in power and choice has not been accompanied by an 
increase in flexible, portable, user-friendly program development environments. If the 



www.manaraa.com

298 Part Three Demonstrations 

potential users of multiprocessor systems are to become actual users such environments must 
be provided. 

It is fair to say that the majority of scientific and engineering users do not have the time or 
the desire to understand the intricacies of data dependence analysis, parallel program design 
and load balancing techniques for multiprocessor machines. For this potential user base a 
viable development environment must provide not only facilities for the development of new 
code but also an integrated toolset to ease the migration of their existing, mainly sequential, 
codes. The Fortport prototype (Milligan et al, 1992, Quill et al, 1995) described here is an 
attempt to provide such an integrated parallel software development and migration 
environment for Fortran programmers. Central to the ethos of the Fortport prototype is the 
belief that the user should have control over the extent of their involvement in the 
parallelisation process. It should be possible for novice users to be freed from the responsibility 
of detecting parallelisable sections of code and distributing the code over the available 
processors. Alternatively, experienced users should have the facility to interact with all phases 
of the parallelisation and distribution of the code. To enable a novice user to devolve 
responsibility entirely to the system implies that the system has sufficient expert knowledge to 
accomplish the task. This paper discusses how such expert knowledge has been provided 
within the Fortport prototype with particular emphasis on the migration of existing sequential 
code onto a multiprocessor architecture. 

2 KNOWLEDGE ACQUISmON AND APPUCATION 

One of the dominant problems associated with program development systems for parallel 
architectures has been the inability to completely automate the system. Several development 
environments exist, e.g. SUPERB (Zima et al, 1988) and POE (Decker et al, 1993), but it is 
inevitable that they require some form of user interaction to assist with the process of code 
parallelisation. This interaction can take two forms, either the user annotates the program to 
indicate to a compiler that certain actions are required or the user interacts with the system 
during execution to choose transformations or data partitioning schemes. 

The effect of the user interaction is to assist the development environment by providing user 
expertise. Hence it should be possible to develop expert systems to at best replace, or at worst 
supplement, this user interaction. 

To investigate the viability of this approach two expert systems were proposed and 
developed for use within the FortPort prototype. One system would assist with the process of 
transformation selection and one with code generation and evaluation. 

A common approach to the development of both expert systems was adopted. The approach 
was to hand code the required solutions and then analyse the decision making processes 
followed in the development of the code, i.e. a reverse engineering model was used. This model 
enabled the key steps in the two processes (parallelisation and generation/distribution) to be 
identified. In addition the key facts that trigger the various decision making steps could be 
identified. These key facts or characteristics again fall into two groups, namely loop 
characteristics and performance characteristics. 

Subsequently the rules used in the expert systems were derived by combining the key steps 
identified in the reverse engineering phase with the relevant characteristics. In general the rules 
have the form: 



www.manaraa.com

A knowledge based approach to parallel software engineering 299 

define rule 'name' 
condition list 

=> action. (1) 

The condition list contains one or more expressions based on the characteristics which must 
be satisfied for the designated action to take place. When all of the conditions in a list are met 
the rule is fired. Examples of complete rules are given in a later section of the paper. 

Future extensions to the knowledge acquisition phase will add characteristics derived from 
the application domain, prior and historical knowledge, i.e. decisions made in the past that may 
be applicable again. In other words a long term goal of the system will be to provide a learning 
environment. 

3 THEPROTOTYPESYSTEM 

3.1 Input Handling and Graph Construction 

The input handler generates a representation of the user program in the form of a graph. The 
graph is formed from a hierarchy of nodes. A detailed description of the graph nodes has been 
prepared by (Sage et al, 1993). 

One of the key reasons for choosing a graph based approach is the ease with which it may be 
modified and extended. In, for example, the parallelisation of a program targeted at a system 
employing a message passing model for inter-process communication, the communication 
primitives will have to be included explicitly in the program. This can be achieved by inserting 
additional nodes in the graph, known as ghost nodes. 

3.2 Graph Transformation 

The graph of a loop is traversed by a number of analysers which build up a picture of the loop. 
This picture forms part of the input to the parallelisation expert system. Basically, as loops 
represent a rich source of potential parallelism, the goal is to identify the best loop distribution 
possible. This requires the system to undertake traditional dependence analysis and reduction, 
followed by loop distribution. A variety of traditional and novel techniques are provided, e.g. 
statement reordering, loop interchange, loop skewing, variable copying and scalar and array 
expansion are provided as core or kernel activities. 

To illustrate the principle of loop picturing consider the following trivial example: 

DOl= l,N 
DOJ= l,N 

sl: A(I,J) = B(I,J) 
s2: C(l, J) = A(l+l, J) 

END DO 
END DO 

Some of the facts of this loop are represented as follows: 



www.manaraa.com

300 Part Three Demonstrations 

(loop 1 IN) 
(loop 21 N) 
(concurrent 2) 
(anti 2 1) 
(actual A by Row) 
(actual (B byRow) 
(actual (C byRow) 
(overall byRow 1) 
(overall byRow 2) 

/* outer loop, subscript I, upper bound N *I 
/* inner loop, subscript 1, upper bound N *I 
/* only the second loop (1-loop) is parallel*/ 
/* anti dependence (due to A) from s2 to sl */ 
/* user specified */ 

/* characterisation analysis has identified the*/ 
/* overall data partition for each statement*/ 

3.3 Application of Knowledge Based Techniques 

The rule-based approach used in this system receives as input a list of facts generated by the 
loop analysis. A set of rules have been built up as the result of studying code parallelisation. 
There are multiple goals, one for each transformation, and the system forward chains through 
the rule base until all goals are met or the system fails. However, this process can result in a 
number of valid transformations being selected. 

The specific examples given below deal with loop interchange strategies: 

(defrule loop-interchange-check-4 
(not (outer-loop-parallel) 
(concurrent $?front ?num $?rear) 
(test(<> ?num 1)) 

=> 
(assert (apply Loop-Interchange 1 ?num))) and 

(defrule loop-interchange-check-? 
(declare (salience 100) 
(not (clashing-data-distributions) 
(overall byRow 1) 
(loop 1 I?) 
(loop 2 1 ?) => (assert (apply Loop-Interchange NOT REQUIRED))) 

Both of these rules are concerned with determining whether or not a loop interchange 
strategy should be applied. Using the fact list derived from the trivial example in the preceding 
section both rules will fire giving rise to an apparent conflict. This is resolved by considering 
the weighting factor (salience) associated with each of the rules. For the rules described above 
ensuring that the partitioned iterations on each processor access local data is more important 
that ensuring parallel loops. This is denoted by giving the second rule a weighting of 100. 

A set of rules has been developed for use with the core transformations that are implemented 
in the current version of the prototype. The results output from the transformation phase are 
passed to the generation and evaluation phase. Here a series of codes (based on the alternatives 
identified by the transformation selection phase) can be generated and evaluated. 



www.manaraa.com

A knowledge based approach to parallel software engineering 301 

3.4 Code Generation and Evaluation 

The code generator accepts as input the modified graph produced by the parallelisation phase 
and generates lists of information representing the characteristics of this 'parallel' graph. Once 
again, information on the remaining data dependence, loop boundaries, variable accesses, 
hotspot analysis is gathered. 

This information, together with some basic characteristics of the target architecture, is fed to 
the generator expert system (GES) which returns recommendations on initial code and data 
distribution. 

Within the prototype the parallel architecture is regarded as a master/slave topology with an 
SPMD model. Inter-process communication is handled by PVM like communications strategy. 
Future changes will introduce the use of the MPI scheme. For demonstration purposes the 
current version of the prototype generates CSTools Fortran for execution on a Meiko M40. 

As a program is executed proflling information is gathered. The initial distribution assumes 
that all slave processors will have the same execution profll.e. Clearly this will only be true for 
very simple programs and the information from the first execution will indicate which 
processors carry the major compute-intensive elements of the program. 

Once identified, the compute-intensive element(s) can be subjected to closer scrutiny to 
attempt to identify the precise sections of code that are proving to be time consuming. For 
example problems can arise due to communication overload or external library calls. The 
profller will find the subroutine(s) causing the delays and indicate the nature of the problem. 
This information can be used by the programmer to enable the code to be distributed in a 
different manner. Alternatively the information can be fed to the GES, i.e. a feedback loop is 
available. 

The GES can handle the feedback information obtained by the profller in several ways. 
Initially an attempt is made to eliminate the problem(s) in a task by recommending a different 
loop distribution. This will require the generator to produce an alternative partitioning of the 
arrays associated with the loop involved and hopefully will reduce communication times. 

If this approach fails then an alternative may be to produce a different distribution of the 
program code across the slave processors. If this approach is adopted then the execution 
proflling and feedback runs again to analyse the new situation and report accordingly. 

However it may be the case that having tried different loop distributions and different code 
partitioning strategies that no real gain in performance can be detected. If this situation arises 
then the GES will report this fact to the parallelisation expert system. If this step is taken then 
the parallelisation phase is reactivated with the goal of identifying an alternative set of 
transformations that will be applied to the original graph-based representation of the source 
program. In other words the complete development/migration cycle begins again. 

4 CONCLUSION 

The FortPort prototype, currently under beta-test, offers graph construction, knowledge driven 
loop restructuring and knowledge driven code generation. Transformations to remove or reduce 
data dependence are selected dynamically based on loop characteristics. Code and data is 
distributed across a multiprocessor architecture again on the basis of the analysis of loop and 
architecture characteristics. 



www.manaraa.com

302 Part Three Demonstrations 

The existing model for the creation of rules, i.e. analysis of hand coding, will be supplemented 
by a new approach. At the moment the transformations are expressed directly in program code. 
However a transfonnation is in effect a graph reordering function, i.e .. the effect of applying a 
transformation to a graph-based representation of a program is simply to produce another graph. 
A kernel set of graph manipulations,,so-called atomic operations, have been isolated. All existing 
transfonnations in the system can be expressed in tenns of suitable combinations of these atomic 
operations. Future work will explore the effect of different combinations of the atomic operations 
on a program graph with the goal of identifying new transformations for parallelisation. 

The major strength of the FortPort system is that it provides a complete development and 
migration environmenL Novice users can receive expert help with the complex task of 
parallelising a program. Equally, experienced users can benefit from the reconunendations 
produced by the expert systems. While the prototype will accept F'/7 the fmal version of the 
system will accept both F90 and HPF and will assist a user with the task of selecting appropriate 
parallelising statements. 

5 REFERENCES 

Decker, K.M., Dorvac, J.J. and Rehmann, R.M. (1993) A Knowledge-Based Scientific Parallel 
Programming Environment, Technical Report CSCS-TR-93-07. 

Milligan, P., McConnell, R.K., Rea, S.A., Benson G. and Sage, P.P. (1992) Apparently 
Sequential Programming Environments for Parallel Computing, Parallel Computing and 
Transputer Applications, lOS Press CIMNE, Barcelona, 297-306. 

Quill, J.C., McConnell, R.C. and Milligan, P. (1995) A Prototype Environment for 
Parallelization, Lecture Notes in Computer Science, 919, 936-936. 

Sage, P.P., Milligan, P., McConnell, R.K., Rea, S.A. and McCamey,M.T. (1993) Graph 
Management within the FortPort Migration Environment, Microprocessing and 
Microprogramming, 33, 137-140. 

Zima, H.P., Bast, H.J. and Gerndt, H.M. (1988) SUPERB- a tool for semi-automatic MIMD/ 
SIMD parallelisation, Parallel Computing, 6, 1-18. 

6 BIOGRAPHY 

Peter Milligan is a senior lecturer in the Department of Computer Science. Cum:ntly his research 
programmes are devoted to the design and implementation of intelligent, semi-automated 
programming environments for the generation of parallel programs. In addition Dr Milligan works 
on the migration of mathematical codes to parallel architectures. Dr Milligan has supervised over 
30 MSc and PhD students and has been involved in the organisation of six international 
conferences and three international workshops devoted to parallel and distributed computing. 
Patrick Corr is a lecturer in the Department of Computer Science. His research interests centre on 
the application of artificial intelligence techniques, particularly neural networks, to a range of 
problems in science and engineering. Paul Sage and Paul McMullan are postgraduate students 
currently completing PhD theses on aspects of parallel software developmenL 



www.manaraa.com

29 
Problem-Solving on Scalable 
Parallel Systems Using Application 
Specification and Reusable Software 
Components 

Karsten M. Decker, Jiri J. Dvorak, and Rene M. Rehmann 
Swiss Center for Scientific Computing (CSCS/SCSC) 
Via Cantonale, CH-6928 Manno, Switzerland 
E-mail: {decker, dvorak, rehmann} @cscs. ch 

Abstract 
From the application user's point of view, ease of programming of distributed memory 
parallel systems has not been achieved yet. It is the purpose of this paper to demonstrate 
how these limitations can be overcome by our Program Development Environment PDE 
currently under development. The environment features a problem-oriented specification 
formalism and is based on a skeleton- and template-oriented application development 
methodology. The large set of fine-grain algorithmic skeletons and templates used in 
the system provides the basis for a software reuse mechanism and is managed with a 
knowledge-based component. Skeletons are completed with computational components 
by means of automatic program synthesis techniques. We present our current results, 
summarize the major achievements, such as software reuse and portability, and give an 
outlook on future research directions and related publications. 

1 INTRODUCTION 

Despite remarkable progress in hardware and software technology for Distributed Memory 
Parallel Processor (DMPP) systems over the last few years (for an overview of the state
of-the-art in parallel programming, we refer to (Decker, Dvorak, Rehmann & Riihl1995)), 
simple development of scientific and engineering applications has not yet been realized. 

To improve the unsatisfactory situation, it is the goal of our research to develop an 
easy-to-use application engineering environment (problem-solving or programming envi
ronment in the following) for the synthesis of new application software in the scientific and 
engineering sector in a user-centered and application driven way. Four key characteristics 
describe and position our approach. First, application-oriented problem description for
malisms serve to focus on what the problem is and which computational methods should 

Project funded by the Swiss National Science Foundation (SNF) in the framework of the Swiss Priority 
Program Informatics (SPPIF), Grant-No. SPPIF-5009-034402 



www.manaraa.com

304 Part Three Demonstrations 

be used to solve it. Second, the use of design skeletons and templates provides a software 
reuse mechanism and hides the difficult parts of programming DMPPs while ensuring 
good scalability, (efficiency-preserving) portability, and parallel efficiency. Third, interac
tive guidance supports exploitation of user knowledge as completely as possible. Finally, 
automatic program synthesis techniques ensure a transparent coding process. 

Based on the recent success of parallel systems in the business sector, where familiar 
application development interfaces are applied and parallelism is offered transparently, we 
believe that a descriptive formalism is essential. Algorithmic skeletons or similar structures 
were proposed in the past for software engineering and reuse (Waters 1982) as well as 
for parallel computations (Cole 1989). The basic idea underlying these approaches is to 
encode reusable structural characteristics of algorithms in skeletons. A skeleton typically 
contains open, i.e., generic, parts that have to be filled in to adapt the skeleton to the 
given situation and to get a complete algorithm or algorithm component. 

It is the purpose of this paper to outline the achievements of our high-level Program De
velopment Environment (PDE) and to report on future research directions. For a detailed 
description of the design objectives, the underlying application development methodology, 
and an assessment of the methods we use, the interested reader is referred to (Decker, 
Dvorak & Rehmann 1994b). 

2 RESULTS 

2.1 A Programming Environment for Stencil-based Problems 

In the spirit of a rapid prototyping approach to test system functionality, we started our 
research with feasibility studies for the very simple class of stencil-based problems (Decker, 
Dvorak & Rehmann 1994a) characterized by the operation of a local computational stencil 
on n-dimensional grids. Applications in this class include, for instance, the restoration of 
gray-scale images with different smoothing operators and the solution of partial differential 
equations according to the finite difference method. 

We illustrate the functionality of the PDE for this problem class with the solution of the 
Poisson equation on a simple two-dimensional rectangular grid with periodic boundary 
conditions. The Laplace operator is approximated by the nearest-neighbor, symmetric 
5-point stencil and we use a Gauss-Seidel algorithm with two colors to accomplish the 
iterative solution. 

The declarative problem description can be done graphically with the Stencil Modeling 
Programming Assistant Interface (SMPAI, Fig. 1) which is then translated into the textual 
Stencil Problem Specification Language (SPSL) description shown in Fig. 2. If this is 
preferred by the user, the programming task can start directly in SPSL. 

As can be seen, the problem description consists of the specification of the problem 
type, the geometry of the problem domain, the size and dimensionality of the grid, the 
structure of a grid cell, the boundary conditions for each physical boundary of the grid, 
the computational stencil, the numerical method, and the domain decomposition scheme. 
Since SPSL realizes a complete problem description (Roth 1993), there is no further user 
interaction with the PDE required. 

The PDE now successively transforms the SPSL problem description into a compil-



www.manaraa.com

Problem-solving on scalable parallel systems 

Figure 1 The graphical user interface of the SMPAI. 

grid_spec { 

} ; 

grid_offset z [0,0]; 
grid_size = {512,512}; 
boundary_grid { 

boundary_grid_type = PERIOOIC_BND; 
} SOUTH; 
boundary_grid { 

boundary_grid_type = PERIODIC_BND; 
} NORTH; 

stencil_spec { 
stencil_action a { 

} ; 

f<[O,O]> • 0.25•(f<[-1,0]> + f<[0,-1]> + f<[1,0)> + f<[0,1)>) 
- f_rho<[O,O]> 

} ; 

Figure 2 SPSL description of the programming example. 

305 

able program. The Programming Assistant (PA) first reads the problem representation 
and starts the reasoning process with the goal to find the most appropriate algorithmic 
skeleton for the given problem. The reasoning process is a rule-driven descent in the skele
ton hierarchy, based on the information given in the problem specification and various 
rule bases maintained by the PA. Expertise about the application domain, parallel pro
gramming, and software engineering are encoded in the rules that control this skeleton 
selection. Knowledge about characteristics of different hardware platforms will be added 



www.manaraa.com

306 Part Three Demonstrations 

in a future prototype. Together with the specification of the problem at an abstract level, 
the hardware knowledge integrated in the skeleton selection will ensure portability at the 
algorithmic level, above the level of general-purpose programming languages. 

The chosen skeleton contains all information needed for the generation of a parallel 
framework suitable for the problem under consideration. In particular, it defines the data 
distribution scheme and the communication and synchronization structure. Based on the 
chosen skeleton and the problem representation, the PA produces two different outputs 
for the two-component structure of the Program Synthesizer (PS). 

One part of the final code generation step is done by the TINA skeleton genera
tor (Gutzwiller 1993), which generates the C-code for setting up the process topology, 
data distribution and communication calls for different message-passing interfaces, and 
calls the computational components. 

The computational components are generated by the other component of the program 
synthesizer PS (Rehmann 1994). This component starts from an abstract definition of the 
computational units of the application and the definition of the grid structure. Using this 
input, it generates code for the function which calculates the user-defined computational 
stencil, the functions for filling and scattering the communication buffers from and to the 
grid, and the function calls for the various types of boundary conditions. 

2.2 Towards Programming of General Data-parallel Problems 

From the application user's point of view, the problem domain of stencil-based applications 
discussed in Sect. 2.1 is of rather low importance. To qualitatively increase the usefulness 
and attractivity of the PDE, our most recent and current research is concerned with a 
major step towards supporting the programming of general data-parallel problems which 
are of real practical interest to the scientific user community. 

To achieve this goal, we follow a step-wise approach. Analyzing user requirements and 
identifying the important components of real applications, we first focus on problems 
resulting in the formulation of linear algebra operations. Within this problem ·class, we 
concentrated on developing a programming environment for iterative solvers for general 
linear systems. 

The problem class of iterative solvers for general linear systems has very different char
acteristics than the class of stencil-based problems: the problem description may be incom
plete, problem realization may require more than one algorithmic skeleton or template 
with a fixed parallel structure, and consequently, the careful design of data structures 
becomes crucial. 

To realize a programming environment for this problem class, all three functional com
ponents of the PDE, i.e., the PAl, the PA, and the PS, need to be reconsidered and en
hanced. In this paper, we report on three activities: the development of the specification 
language for the problem class of iterative solvers, a first prototype for the corresponding 
Data Modeling Programming Assistant Interface (DMPAI), and a related prototype of the 
PA. 

An essential part of the DMPAI is the underlying declarative problem specification 
language. The Basic Language for Iterative, Parallel Solvers (BLIPS) (Toupin 1994) has 
a Pascal-like syntax, provides support for intrinsic and user libraries, supports abstract 
property specification to describe problem characteristics, and has dynamic language sup
port. The latter characteristic of BLIPS allows the user to define and adapt the language 



www.manaraa.com

Problem-solving on scalable parallel systems 

template solve(A: matrix; x, y: colvector); 
A is symmetric and pos_definite; 
for solve A • x = b; 

do 
{ implementation of the solver algorithm (e.g., CG)} 

end do; 

template solve(A :matrix; x, y : colvector); 
A is non_symmetric and transp_not_avail and storage_limited; 
for solve A • x = b; 

do 
{ implementation of the solver algorithm (e.g., BiCGSTAB)} 

end do; 

procedure main; 
var A: matrix; 

x,b: colvector; 
where A is symmetric and pos_definite; 
do 

read A from "pde.mat"; 
read b from "pde-b. vee"; 
solve A•x=b; 
write x to "pde_soln.vec"; 

end do; 

Figure 3 Definition of a linear solver in BLIPS. 

307 

according to his specific needs. An example showing how to define a linear solver for a 
specific type of matrix is given in Fig. 3. 

The most recent prototype contains the static knowledge base for the PA, i.e., tem
plates implementing different algorithms for parallel iterative solvers. These templates 
are wrappers for a library of parallel iterative solvers developed in another project at 
CSCS. Additionally, we have extended the dynamic knowledge, i.e., the rules to make use 
of the correct templates for a specified application and we have developed a user interface 
that allows the specification of an application and the editing of new or existing tem
plates. As the templates only contain calls to library functions, no sophisticated program 
synthesizer is needed. 

3 FUTURE DIRECTIONS 

Our future research will concentrate on improved programming environments for the class 
of data-parallel programs. We intend to successively relax the constraints on the supported 
application spectrum currently imposed. Formalization of the large amount of application 
knowledge to enhance the rule base of the PA will be crucial to ensure the long-term 
success of these systems. 

An important topic which will be investigated is which requirements the user dialog 
with the PDE must satisfy to guarantee successful interaction, respecting (and taking 



www.manaraa.com

308 Part Three Demonstrations 

advantage of) the conceptual models, knowledge structures, and working processes of our 
target user community, i.e., application users. 

Another subject of research is the development of a hardware knowledge base with 
corresponding hardware-dependent algorithmic skeletons and templates. Together with 
appropriate rules to choose the correct skeleton or template for a given hardware, it will 
be possible to generate program code which runs optimally on specific hardware. This 
mechanism ensures true, i.e., efficiency-preserving portability across hardware platforms 
as the application-oriented problem description needs not be changed to optimally run an 
application on different hardware platforms. 

A further important topic which we believe should be addressed in the near future 
is teaching effective usage of DMPPs. Here we envisage machine-assisted learning which 
could be realized more or less easily by suitable enhancements of our PDE. 

Finally, the supported application spectrum should be broadened further, in particular 
with support for non-numerical problems. 

REFERENCES 

Cole, M. (1989), Algorithmic Skeletons: Structured Management of Parallel Computation, 
Research Monographs in Parallel and Distributed Computation, The MIT Press, Cam
bridge, MA, USA. 

Decker, K. M., Dvorak, J. J. & Rehmann, R. M. (1994a), A Knowledge-based Scientific 
Parallel Programming Environment, inK. M. Decker & R. M. Rehmann, eds, 'Working 
Conference on Programming Environments for Massively Parallel Distributed Systems', 
Birkhauser Verlag, Basel, pp. 127-138. 

Decker, K. M., Dvorak, J. J. & Rehmann, R. M. (1994b), User-driven development of a 
novel programming environment for distributed memory parallel processor systems, in 
'Priority Program Informatics Research Information Conference Module 3 Massively 
Parallel Systems', Swiss National Science Foundation, pp. 4Q-47. 

Decker, K. M., Dvorak, J. J., Rehmann, R. M. & Riihl, R. (1995), 'Matching User Require
ments in Parallel Programming', Future Generations Computer Systems. accepted for 
publication. 

Gutzwiller, S. (1993), Werkzeuge und Methoden des skelettorientierten Programmierens 
von Parallelrechnern, PhD thesis, University of Basel. In German. 

Rehmann, R. (1994), Automatic Generation of Programs for a Scientific Parallel Pro
gramming Environment, Technical Report CSCS-TR-94-02, Centro Svizzero di Calcolo 
Scientifico, CH-6928 Manno, Switzerland. 

Roth, M. (1993), Generation of Algorithmic Skeletons from Stencil Specifications, Master's 
thesis, lAM, University of Bern. In German. 

Toupin, T. (1994), SiPS Language Specification Proposal, Technical Note SeRD-CSCS
TN-94-09, Swiss Scientific Computing Center, CH-6928 Manno, Switzerland. 

Waters, R. C. (1982), 'The Programmer's Apprentice: Knowledge Based Program Editing', 
IEEE Trans. on Software Eng. SE-8(1), 1-12. 



www.manaraa.com

S
te

n
ci

l 

G
lo

ba
l 

'I
 )

 
G

rid
) 

E
xt

e
rn

a
ls

 F
ile

: 
po

ls
so

n:
e1

 

D
e

co
m

p
o

si
ti

o
n

 D
im

e
n

si
o

n
s:

 
__

_,
 

_
_

, _
 _,

 
, 

I 
I 

~
.
!
V
I

·-"
"

_ 
P

ro
b

le
m

 T
yp

e
 

NO
RT

H_
W

ES
T 

NO
RT

H 
p

er
io

d
ic

 

D
 

D
 

W
ES

T 
I 

r
-

in
te

ri
o

r 
L

-

SO
UT

H_
 W

ES
T 

J~
 

0 
D

 
SO

UT
H 

p
er

io
d

ic
 

...
; 

G
ri

d
 O

ff
s
e

t 

X:
 

3 _
_

 L
Jy

j 

l:
 n

 

W
: 

u 
_

. 

A
pp

ly
). 

R
es

et
) 

N
O

RT
IL

EA
ST

 

E
 

p 

P
er

io
di

c 

P
hy

si
ca

l 

un
us

ed
 

SO
U

TI
LE

A
ST

 

S
te

n
ci

l a
n

d
 C

o
lo

ri
n

g
 E

d
it

o
r 

vi
ew

 E
Qn

 T
e

xt
) 

_A
P

P
,!V

 
·,

D
on

e
) 

R
H

S
 M

e
m

b
e

rs
: 

f(
-1

,0
) 

f(
0

,-
1

) 
f(

1
,0

) 
f(

O
,l

) 

LH
S

: 
!:.1

 g
ro

up
1 

C
o

e
ff

ic
ie

n
t:

 0
.2

',.
 

T
im

e
 O

ff
s
e

t:
 (

)_
 __ 

• 
.:~
tt

) 

G
rl

d
va

r 
N

am
e:

 f
 _

_
_

_
 _ 

. a
pp

ly
) 



www.manaraa.com

30 
The PS project: development of a simulator 
of PVM applications for Heterogeneous and 
Network Computing 

R. Aversaa, A. Mazzeoa, N. Mazzoccaa and U. Villanob 

a DIS, Universita' di Napoli, Via Claudio 21, 80125 Napoli (Italy) 
biRSIP-CNR, Via Claudio 21, 80125 Napoli (Italy) 
e-mail: [avers a ,mazzeo ,mazzocca, villano] @nadis .dis .unina.it 

Abstract 
Heterogeneous computing environments require performance evaluation techniques that are 
more sophisticated and cost-effective than those currently used. This paper briefly describes a 
project aimed at the development of PS, a simulation environment for the performance analysis 
of distributed applications executed in Heterogeneous and Network Computing environments 
through the PVM run-time system. 

Keywords 
Heterogeneous Computing, Network Computing, Simulation, Performance Evaluation, PVM. 

1 INTRODUCTION 

Heterogeneous Computing (HC) (Khokhar, 1993}, (Mechoso, 1994) and Network Computing 
(NC) (Anderson, 1995) share as a common denominator the exploitation of heterogeneous 
computing resources. The increased complexity of heterogeneous environments calls for 
performance measurement and analysis techniques that are more sophisticated and cost
effective than those commonly used in homogeneous parallel and distributed computing 
systems. Of great practical interest in particular is to obtain performance data before the 
software implementation, since this enables the software developer to choose carefully the 
workload to be assigned to each target machine as early as in the software design stage. This is 
a particularly thorny problem both in HC (Wang, 1992) and in NC (Mazzeo, 1995). 

The above considerations are among the premises of the PS project, started in 1993 as a 
cooperation between the Department of Informatics of the University of Naples and IRSIP, an 
institute of the Italian National Research Council (CNR). PS (PVM Simulator) is a simulator 
for the performance analysis of distributed applications based on the Parallel Virtual Machine 
paradigm, the de facto standard for programming HC and NC systems (Geist, 1994). The 
software simulated by PS can either be a complete PVM program or a prototype, i.e., a 



www.manaraa.com

The PS project 311 

partially implemented program design. The simulation of the whole hardware/software system 
makes it possible to obtain aggregate and analytical indexes related to the heterogeneous 
system performance (e.g., efficiency, throughput, response time, individual processor 
utilisation), or traces which can be processed off-line by Paragraph to visualise the simulated 
program execution in a variety of different views. 

In our opinion, the role that simulation techniques can play in parallel software engineering 
has not yet been fully recognised. In a recent paper, we have shown that simulation tools can 
help managing the complexity of software development for heterogeneous hardware (Aversa, 
1995a). In this context, the fundamental advantage of simulation is flexibility. Simulation tools 
make it possible to compare the behaviour of different algorithms on the same hardware 
platform, to assess the effect of different problem decompositions, task allocations and load 
sharing techniques, or even to study the performance of a single algorithm on several existing 
or hypothetical computing environments. Simulation tools require neither the 
oversimplifications which are commonly used to deal with complex hardware/software systems 
through analytical models, nor the availability of fully-developed software and of a real 
machine, which are necessary for the performance analysis by monitoring/tracing tools. On the 
minus side, it should be noted that accurate simulations are computationally expensive. PS is 
characterized by a light simulation overhead, thanks to the adoption of models of program 
tasks which are at a higher level of abstraction than those adopted by other existing simulators. 
The modelling of the communication subsystem is instead particularly accurate, and is also 
capable of considering the effect of external network load. The fairly high accuracy attained in 
all validation tests of the simulator show that these are perfectly reasonable solutions, at least 
for the heterogeneous computing platforms which are currently available. 

2 PS: A PVM SIMULATOR 

PS (PVM Simulator) makes it possible to simulate a complete PVM application by combining 
predefined objects that simulate the inter-task communication subsystem (PVM daemons, 
TCPIIP protocol, network interfaces, physical interconnection medium) along with objects 
simulating the tasks making up the user program (Aversa, 1994-1995b). Its simulation kernel 
has been implemented using the Ptolemy environment (Buck, 1994), and can therefore be 
ported to any computing platform where Ptolemy can be executed, e.g., Sun, DEC and HP 
workstations, and IBM PC under Linux. A complete Ptolemy application (called a Universe) 
consists of a network of interconnected Blocks. Blocks may be either Stars (atomic objects) or 
Galaxies (composite objects, made up of Stars and other Galaxies). PS provides predefined 
objects (Stars and Galaxies) that model the computing environment. These objects are to be 
connected using the Ptolemy interactive graphical interface to Galaxies modelling user code, 
thus setting up a Universe which is representative of a complete PVM application. The effect 
of network load can be taken into account by means of predefined Stars sharing the same 
physical network medium, which generate a given statistical network load distribution. 

A typical PS simulation session consists of the following phases (Figure 1): 
1) The Galaxies modelling user code are built. User code can be supplied either as a complete 

PVM program or as a prototype. Prototypes are skeletons of code containing PVM calls, 
where some of the computations have been replaced by calls to delay procedures taking into 
account the time spent in the actual code. 



www.manaraa.com

312 Part Three Demonstrations 

2) The user sets up a Universe that is representative of the whole hardware/software system by 
constructing a graph where the nodes are icons corresponding to Galaxies or Stars, and the 
(directed) arcs represent interactions between them. 

3) A suitable number of monitoring Stars, which record the events occurring in a specific point 
of the Universe, are insened into the Universe diagram. 

4) The modules of simulation code corresponding to the icons contained in the Universe are 
compiled and linked to the event scheduler. 

5) The simulation is performed by executing the program produced at point 4. 
6) The information on system performance produced during the simulation is examined. As 

Stars which produce a trace of program execution in a format compatible with Paragraph 
(Heath, 1991) are provided, it is also possible to collect more in-depth information about 
program behaviour and system performance off-line. If the measured performance is not 
satisfactory, new hardware configurations or allocation strategies have to be tried. This 
entails repeating all the previous steps several times. 

l Hardwar? I PVM 
conf~gurauon program/prototype 

1 
User c:ode 
modeR1ng 

... 
Simulahon 
Univ01$G 

construcoon 

Evonls 10 bo monitored 
lnseroon of 

I Simulation OOJipUI ~ monotonng 

requ~rod 
s1ars 

• 
~allOO 

and finlung of 
simul. oode 

... 
Sunulabon 

+ 
fnlormanon on 

... S)'$1811'1 

Off·•r~e 
porfoonanoe 

visualizanon of ___,--
program 

Analysis of 
bohOIIIOIM' 

perlormanoa 
dala 

~sl Allocanon 
skslprocessors 

new har dware 
nand/or 
at ion 

configuratio 
new alloc 

Figure I Phases of a PS simulation session. 



www.manaraa.com

The PS project 313 

A point that is worth discussing in more detail is how the program to be simulated is 
modelled in PS. The PVM application behaviour is modelled at user-task level by a set of UT 
(User Task) Galaxies, which model the user tasks running on every processor. For the sake of 
simulation accuracy, these objects should reproduce as closely as possible the sequence and the 
timing of the run-time requests of the actual program to the PVM daemon. The PS 
environment provides two different methods for the construction of UT Galaxies. The first 
possibility is to adopt a delay-PVM call model, building a graph where Stars invoking PVM 
primitives are interleaved by delay Stars corresponding to the time spent executing the code 
contained between them (the computation delays are estimates found by direct measurement 
under suitable test conditions or through statistical and/or analytical models). Another possible 
approach relies on the examination of the source code by a static program analysis tool, which 
analyses the performance behaviour of each task on the particular sequential or parallel 
computer where it will be actually executed. A tool for the static analysis of PVM code within 
the PS framework is currently under testing, and will be released in the near future. 

The second option is to use execution-driven simulation (Convington, 1988), which is 
surely the recommended option when program execution time has not simple dependence on 
input data. In execution-driven mode, every PVM program task is modelled by a UT Star 
containing a version of the user code where PVM calls have been replaced with calls for 
service to the objects simulating the Parallel Virtual Machine level. During the simulation, the 
PVM program is actually executed (i.e., it is not simulated) in quasi-concurrence on the 
workstation hosting the PS environment. Whereas, the behaviour of the PVM run-time 
support, of the communication protocols and of the interconnection network is still simulated. 
Unlike other simulators based on the execution-driven approach (Davis, 1991), (Brewer, 
1991), PS uses a simplified method to estimate the execution time of the block of code 
between two successive interactions with the simulation engine (interactions occur at every 
PVM call). This method introduces a much lower simulation overhead and leads to no 
significant accuracy loss, due to the coarse granularity of PVM tasks. 

Figure 2 shows a screen dump taken during one of the simulation sessions described in 
(Aversa, 1995a). The picture shows the host display during the simulation of one of the 
algorithms considered for performing a matrix multiplication on a network of four 
workstations. The large window in the middle of the picture is the graphical representation of 
the simulation Universe. The four icons on the left of the Universe are the UT Galaxies 
simulating the behaviour of the application code executed on every node of the network. The 
Parallel Virtual Machine level, which models a computing node along with its run-time 
support, consists of the column of four icons in the middle of the window. The Network level 
is made up of the single icon on the right, which represents the shared transmission medium. 
The window in the lower left corner is an insight view of a UT Galaxy, showing in some detail 
its interface to the Galaxy simulating the PVM daemon. Figure 2 also shows samples of the 
Paragraph performance summaries of the simulated program execution, namely a Spacetime 
diagram and a Utilization Gantt chart. 

3 CURRENT STATUS OF THE PROJECT - FUTURE DIRECTIONS 

Over the last year and half PS has evolved from a largely-incomplete prototype to a fully 
working version. The results of all our validation tests, some of which are reported in (A versa, 



www.manaraa.com

314 

--........ 
.... 

Part Three Demonstrations 

tult~-... 

Control pall<! lOt BH-...tt ·-

Th 

I 

Figure 2 Host display during a PS simulation session. 

"".., 

. ~ . ,,.,., . 

-
1994), (Aversa, 1995b), have been particularly encouraging. PS never led to figures more than 
5% far from those obtained by running the actual program on the real computing environment. 
Using the delay-PVM call model for user task, the PS simulation speed is too high to be 
compared to the execution rate of the actual program on a single processor. Whereas, if 
execution-driven mode is chosen, the execution of a PVM program is emulated a factor of only 
6 to 9 times slower than the execution of the same program in quasi-concurrence on the 
simulation host. Unfortunately, we are not equally satisfied of the ease of use and friendliness 
of PS. The construction of the delay-PVM call Galaxies modelling user code is not easy and 
requires a sufficient degree of familiarity with the simulator itself. Furthermore, setting up the 
simulation Universe using the Ptolemy graphical interface is a time-consuming task, and one 
that does not lend itself to be automated by any software tool. This is the reason why we 
decided not to release the first version of PS outside our research group, and to redesign the 
simulator user interface in order to produce a new version amenable to be publicly distributed. 

At the state of the art, the core of the version 2.0 of PS has been already implemented and 
is currently under testing. Besides the execution-driven mode (which is still supported, since it 
seems the best option for expert users), the new version of PS also makes it possible to launch 
a simulation session without using the Ptolemy graphical interface. In this case, the simulator is 
fed with a trace previously obtained by executing the PVM program in quasi-concurrence on a 



www.manaraa.com

The PS project 315 

single workstation or in real concurrence on a scaled-down distributed environment, and 
tracing the calls to the run-time support by means of a PVM-tracing library. A further issue 
that is being addressed in the development of the second version of PS is the possibility to 
study the effect of load due to tasks not belonging to the program to be analyzed. This will be 
obtained in much the same way as the effect of external network load is taken into account, 
i.e., by the addition of statistical interference with the computations on-going in each node. 

4 REFERENCES 

Anderson, T.E., Culler, D.E. and Patterson, D.A. (Feb. 1995) A Case for NOW (Networks of 
Workstations). IEEE Micro, 15, 54-64. 

Aversa, R., Mazzocca, N. and Villano, U. (1994) PS: a Simulator for Heterogeneous 
Computing Environments, in Massively Parallel Processing Applications and Development 
(eds. L. Dekker, W. Smit and J. C. Zuidervaart), Elsevier, 335-343. 

Aversa, R., Mazzeo, A., Mazzocca, N. and Villano, U. (1995) The Use of Simulation for 
Software Development in Heterogeneous Computing Environments. Proc. Int. Conf. on 
Par. and Distr. Processing Techniques and Applications, Athens, GA, 581-590. 

Aversa, R., Mazzocca, N. and Villano, U. (1995) Design of a Simulator of Heterogeneous 
Computing Environments. to be published in Simulation Practice and Theory. 

Brewer, E.A., Dellarocas, C.N., Colbrook, A. and Weihl, W.E. (1991) PROTEUS: a High
performance Parallel-architecture Simulator. Tech. Rep. MIT!LCS!TR-516, Cambridge, MA. 

Buck, J.T., Ha, S., Lee, E.A. and Messerschmitt, D.G., (1994) Ptolemy: A Framework for 
Simulating and Prototyping Heterogeneous Systems. Int. Journal of Computer Simulation, 
4, 155-182. 

Convington, R.C., Madala, S., Mehta, V., Jump, J.R. and Sinclair, J.B. (1988) The Rice 
Parallel Processing Testbed. Proc. 1988 ACM SIGMETRICS Conf. on Measurement and 
Modeling of Computer Systems, 4-11. 

Davis, H., Goldschmidt, S.R. and Hennessy, J. (1991) Multiprocessor Simulation and Tracing 
using Tango. Proc. 1991 Int. Conf. on Parallel Processing, II99-11107. 

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. (1994) PVM: 
Parallel Virtual Machine. MIT Press, Cambridge, MA. 

Heath, M.T. and Etheridge, J.A. (Sept. 1991) Visualizing the Performance of Parallel 
Programs. IEEE Software, 8, 29-39. 

Khokhar, A.A., Prasanna, V.K., Shaaban, M.E. and Wang, C. (June 1993) Heterogeneous 
Computing: Challenges and Opportunities. IEEE Computer, 26, 18-27. 

Mazzeo, A., Mazzocca, N. and Villano, U. (1995) Efficiency Measurements in Heterogeneous 
Distributed Computing Systems: from Theory to Practice. submitted to Concurrency: 
Practice and Experience. 

Mechoso, C.R., Farrara, J.D. and Spahr, J.A., (Summer 1994) Achieving Superlinear Speedup 
on a Heterogeneous, Distributed System. IEEE Par. and Distr. Technology, 2, 57-61. 

Wang, M., Kim, S., Nichols, M.A., Freund, R.F., Siegel, R.F. and Nation, W.G. (1992) 
Augmenting the Optimal Selection Theory for Superconcurrency. Proc. Workshop on 
Heterogeneous Processing, IEEE Computer Society Press, 13-21. 



www.manaraa.com

31 
Supporting integrated modelling of parallel 
hybrid systems 

C. I. Birkinshaw and P. R. Croll 
Department of Computer Science 
University of Sheffield, UK 
email: carl @dcs.shefac.uk 

Abstract 
PERCH is the name of a software tool specifically designed to capture the requirements of 
hybrid systems. The aim is to provide an integrated environment from requirement capture 
through to implementation of real applications that are complex and hybrid in nature. The tool 
encourages a parallel view of the systems being modelled and acts as a high level interface to 
further parallel design and analysis environments. 

Keywords 
Hybrid systems, Petri nets, temporal logic, parallel software engineering 

INTRODUCfiON 

The Mixed-Mode* project, a collaboration between two departments at the University of 
Sheffield, is concerned with realistic modelling of complex hybrid systems (Fahrland, 1970) 
comprising of both continuous and discrete components. When the relative mix of continuous 
dynamics and discrete events is non trivial, then the hybrid systems used to model them can be 
difficult to handle. Conventional modelling separates the discrete and continuous aspects, 
which simplifies the problem of modelling and analysis. The disadvantage to this approach is 
that the lack of realistic modelling introduces inefficiencies due to lack of interaction between 
the separated components. In many real practical systems, it is impossible to separate the 
discrete and continuous parts because they are strongly connected in either the space domain 
or the time domain. Handling a system in an integrated fashion would give us a better 
understanding of the system's behaviour. 

The real world is intrinsically parallel and the hybrid systems being modelled should reflect 
that parallelism as realistically as possible. To achieve this the methods and tools used in our 
project both incorporate explicit parallel constructs and permit analysis of parallel behaviour. 

• EPSRC funded granl number GRJHn3S84 .. Siralegi<: Planning and Operalional Conln>l for Complex Mixed-mode SySiems .. , 
Prof DA Lin kens; Prof WML Holcombe, ProfS Banks, Prof PJ Fleming, Dr N Mon, Dr PR Croll. 

2 



www.manaraa.com

Supporting integrated modelling of parallel hybrid systems 317 

The purpose of the tool described here is to give a means of capturing the essential 
requirements of complex hybrid systems, providing a respository of information that can be 
utilised in either of the two interpretations used in the Mixed-Mode project so far. Presently, 
the features of hybrid systems are represented using Extended Coloured Petri Nets (ECPN) 
(Yang et al., 1994) or Hybrid Projection Temporal Logic (HPTL) (Duan, 1994). The result is a 
tool called PERCH (Prototype Environment for Requirement Capture of Hybrid systems). 
PERCH itself adopts a slightly higher level (and sufficiently less formal) model which aims to 
capture the requirements of a hybrid system, giving a specification that is sufficient to allow 
the generation of Petri net or temporal logic based models of the same system. Figure I shows 
an overview of the PERCH environment. PERCH consists of a graphical interface tied to a 
relational database. Details of the requirements and specification of a hybrid system are 
entered into the database, and elements of the data are extracted to produce specifications in 
either HPTL or ECPN. 

Petri nets are a mature model of concurrency, and high level nets such as Coloured Petri 
nets (Jensen, 1990) are powerful modelling tools which now have commercial software 
support (MetaSoft, 1992). Petri nets are especially useful, as they allow us to model the whole 
system; not just the software or hardware which is under computer control, but also the non
deterministic environment in which the system operates. The Hybrid Projection Temporal 
logic allows the modelling of continuous and discrete time and introduces a parallel operator. 
As such it can express the temporal characteristics of parallel hybrid systems. 

PERCH maintains integrity constraints on the contents of the database and provides export 
functions which generate output suitable for the HPTL or ECPN environment. 

Section 2 gives an overview of the PERCH model, while Section 3 outlines the different 
interfaces presented to the system developer. In Section 4 the Design/CPN and HPTL tools are 
presented. 

ECPN 

Figure 1 PERCH Overview. 

2 THE PERCH SPECIACATION MODEL 

In PERCH, A hybrid system is described in terms of objects that may reflect either a logical 
view of the system, or actual physical entities. Each object consists of a number of states which 
describe the discrete events of an object, and continuous functions which describe the 
continuous behaviour of the system for each state. This model loosely follows the conventions 
of the Hybrid Machine model (Duan et al., 1995). In addressing the issue of complexity, a 
hierarchical approach is adopted here. This borrows from the concept of the Hierarchical 
Hybrid Machine of Duan (Duan, 1995), though its semantic treatment is less formal. 

A PERCH object is a physical or logical entity in a hybrid system. Objects may themselves 
contain further objects, providing a hierarchical view of a system. An object that contains 
references to objects at a lower level is called a machine in PERCH terminology. Each object is 
described in terms of state changes and continuous functions which operate between states. 



www.manaraa.com

318 Part Three Demonstrations 

2.1 States and functions 
A state holds over the lifetime of a continuous function, where variables are being continually 
updated according to that function. Entry to the state occurs when a precondition is satisfied. 
Exit from the state occurs when a leaving condition or postcondition is satisfied. When a 
postcondition is satisfied the object moves to another named state. At this point, discrete 
variables may be assigned new values. An assignment may include distributed assignments, 
using the input(?) and output(!) operators ofCSP (Hoare, 1978) and named channels which 
are declared in the machine-wide attributes section. All assignment is assumed to occur in 
parallel, so that the ordering of input and output statements will not potentially cause deadlock. 
These communication channels are implemented in the same manner as that described in 
(Birkinshaw and Croll, 1995) which also describes how livelocks and deadlocks can be 
avoided in synchronous message passing systems. The same postcondition may name more 
than one next state, nominating a set of states to be executed in parallel. 

2.2 Variables and abbreviations 
Variables are either discrete or continuous, they are given a datatype and may be local to an 
object or shared between objects and machines. 

Abbreviations are used as a mechanism for refinement. For example, the predicate too-hot 
may be used as a precondition to a state that is later defined in a sub-object as temp>500 and 
fan=off. Therefore the initial sketch of the system can contain predicates expressing a plain 
English goal or constraint such as abnormal_conditions which is later refined through 
substitution to a mathematically precise definition. Objects naturally inherit the abbreviations 
of their lower level objects. 

2.3 Machine-wide attributes 
The properties described so far have been object specific, i.e. they relate to the local object 
only. There are also a number of properties that are described as being machine-wide, as they 
are inherited automatically by the objects of a machine. These include: a list of variables 
shared by sub-objects; abbreviations used in object definitions and constraints which are HPTL 
expressions expected to hold true throughout the lifetime of a machine. 

3 TOOL INTERFACE 

The PERCH interface is X-windows OpenLook compliant, and the screenshots which 
follow demonstrate some its features. From Figure 2 one can see that an object has a name and 
a free-form text description. The user can select the object to be a machine - i.e. this object is a 
container for a number of other objects, or a process or resource. A process captures the idea of 
a logical object. A resource refers to a physical device or entity in the system. The difference in 
meaning is currently only conceptual. 

The state editor is shown in Figure 3. Conditions may include temporal logic operators, 
continuous functions have access to differential and integral functions. A list of states is given 
for the currently selected object. The observable periodicity is an indication of how often a 
discrete event should observe the latest values of continuous variables. 



www.manaraa.com

Supporting integrated modelling of parallel hybrid systems 319 

Figure 2 Object editor. 

Figure 3 State editor. 

4 AUTOMATIC MODEL GENERATION 

PERCH provides export functions which produce files suitable for importing into the target 
environments of either HPTL or Design/CPN. These files contain instructions for 
automatically generating a model from the PERCH specification. 

Design/CPN (MetaSoft, 1992) is a commercial CASE environment that supports coloured 
Petri nets, and is the environment used for building ECPN models. Each PERCH object is 
constructed as a Design/CPN sub-net. A number of states are collected together in each sub
net. Discrete variables are represented by a named place containing the current value of the 
variable. Global or shared variables are represented by fusion places which may span several 
nets. As a state is generated, some glue is needed to connect a state with its previous and next 
state, and this requires a few extra places or transitions to be inserted between the main 
transitions that describe the activity occurring within each state. 

Continuous variables are modelled in CPN by a place which holds all the continuous 
variables local to that state. The place contains a multiset of values represented as tuples of the 



www.manaraa.com

320 Part Three Demonstrations 

form (variable_tag, variable_ value). This is similar to the notion of an environment in EIR nets 
(Ghezzi et al., 1991). The tag is used to bind the correct tuple values to variables in arc 
inscriptions. PERCH creates ML output files in the current directory. These files may be 
imported into the Design/CPN tool, and rely on a pre-written library of support code designed 
especially for generating Petri net pages from PERCH specifications. Colour sets are 
automatically enumerated, variables typed and abbreviations declared as value constants. 

Although no machine support yet exists for executing Hybrid Projection Temporal Logic, 
PERCH can still support the annotation of HPTL predicates and constraints in the semi-formal 
tool specification, and then perform some simple parsing and integrity checks on these 
annotations (i.e. check that variables in predicates are within the scope of the current object). 
To this end, the tool allows underspecification, where a state may be left with its behaviour 
only partially defined, to be refined at a later date into a complete state or sub-object. 

4.1 Demonstration Example 
Space precludes description of any large examples in this paper, a model of a steel production 
process has been given in (Yang et al., 1995). This, together with a simpler example of a 
thermostat controller are configured for demonstration purposes on a Sun portable. The 
generated net of the thermostate controller is shown in Figure 4. 

- l'aync 

... ~1 

I']C . O ------._.._ 1'1"' 

~ - ~-:-
~ ~...!~~~i_,;: 

::=.t~~·~':..-::"~~ ..... , 
~Thl&l -"'-

.... u • 1'-'--'-•"-'· ,.!,. tJII•n,..u.at._ftaC_alf 

. '-..oo+.c 

""' 

-.... ... -......, 

Figure 4 Petri net of thermostat controller. 

l'oync 

................ ......_... . ............ , . &•c.:w-u._._.... ' ·' 

[!] 
'T..,... lU..,_.u"-""'""•7 ~uv,,- - 1 
t.,::-m..:.:.:..ul..~.u..r-u.....,.._ 

t. -.u U...l• 
IMU• 
~, .. ,. ClM..,.U~'-:.._ __ '-• _ ...... u.1~ I 



www.manaraa.com

Supporting integrated modelling of parallel hybrid systems 321 

5 CONCLUSIONS 

Formal methods and languages, such as Petri nets and temporal logics can be extended to 
describe the continuous and discrete behaviour of hybrid systems. Such systems are inherently 
parallel, in that the continuous steps and discrete events are viewed as happening concurrently 
and the physical and logical processes being modelled are typically distributed. However, it is 
difficult to capture all the necessary requirements and conditions of hybrid systems using a 
single specification language, given the complexity and evolving nature of requirements. A 
higher level, less formal method of capturing the salient points of hybrid systems has been 
described here, one which with machine support, is capable of massaging the requirements 
into one of several formal specification formats. In the case of extended Petri nets, computer 
generation of an executable model is possible. 

Because the software environment itself is complex, computer support was needed for 
managing the different formalisms used in this project. PERCH has been designed to meet that 
requirement and give computer scientists and control engineers a common platform for 
specification and discussion. The tool is extensible in as far as new fields and database tables 
can be added without interfering with the general working of the software. As a means of 
producing a skeleton Petri net for a process description, it has its uses also, and in this way 
addresses the problem of finding Petri net components for process composition, fitting into 
techniques such as the client-server behaviour model (Birkinshaw and Croll, 1996). The tool 
itself does not dictate an interpretation of the specification, only the export interface does this. 

6 REFERENCES 
Birkinshaw, C. I. and Croll, P. R. (1 995). Modelling the client-server behaviour of parallel real-time 

systems using Petri nets. In Proceedings of the 28th AnniUJl Hawaii International Conference on 
System Sciences, vol 2, pages 339-348. ACM and IEEE Computer Society. 

Birkinshaw, C. I. and Croll, P.R. (1996). A client-server approach to parallel software engineering. 
Transputer Communications, 3(1):33-40. 

Duan, Z. (1994). A hybrid projection temporal logic for hybrid systems. In Proceedings of the 
European Simulation Multiconference, Barcelona, Spain. 

Duan, Z. ( 1995). Hierarchic hybrid machines for refinements of hybrid systems. Technical Note 34, 
Mixed Mode Group, University of Sheffield. 

Duan, Z. H., Holcombe, W., and Linkens, D. A. (1995). Specification of a soaking pit system in 
parallel hybrid machines. In Euromicro 95. 

Fahrland, D. ( 1 970). Combined discrete event continuous system simulation. Simulation, pp 61-72. 
Ghezzi, C., Mandrioli, D., Morasca, S., and Pezze, M. (1991). A unified high-level Petri net 

formalism for time-critical systems. IEEE Trans. Software Engineering, 17(2):161-171. 
Hoare, C. A. R. (1978). Communicating sequential processes. Comms. of the ACM, 21(8):666-677. 
Jensen, K. (1990). Coloured Petri nets: A high level language for system design and analysis. In 

Rozenberg, G., editor, Advances in Petri Nets 1990, LNCS, pages 342-416. Springer-Verlag. 
MetaSoft (1992). Design/CPN Reference Manual. Meta Software Corporation, 12S Cambridge 

Park Drive, Cambridge, Massachusetts, USA. 
Yang, Y. Y., Linkens, D. A., and Banks, S. P. (1994). Extended coloured Petri nets and its 

application in mixed mode systems. In Worlahop of hybrid Systems and Autonomous ControL 
Cornell univ., NY. 

Yang, Y. Y., Linkens, D. A., and Mort, N. (1995). Modelling of a soaking pit/rolling mill process 
based on extended coloured Petri nets. Control Eng. Practice, 3(10):1359-1371. 



www.manaraa.com

INDEX OF CONTRIBUTORS 

Aguiar, M 1. Jelly, I.E. 24 
Aversa, R. 310 

KesBler, C.W. 146 
Bass, J.M. 291 Krawczyk, H. 98 
Bemon,C. 86 Kuhn, W. 283 
B6toume, C. 86 
Birkinshaw, C.I. 316 Liu,A.Y. 50 
Botti, 0. 232 Loechner, V. 134 
Browne, A.R. 291 Luksch, P. 259 
Bull, J.M. 208 
Burkhart, H. 283 Maier, U. 259 

Marcenac, P. 27 
Capra, L. 232 Mazzeo,A. 265,310 
Carter, F. 110 Mazzocca, N. 310 
Cattel, T. 183 McMullan, PJ.P. 297 
Chan, T.S. 50 Milligan, P. 297 
Corr, P.H. 297 Mitschele-Thiel, A. 15 
Coutts, I. 1 Mongenet, C. 134 
Cowling, A.J. 195 
Croll, P.R. 291,316 Nike, M.C. 195 

Nixon, P.A. 158 
Decker, K. M. 303 
DiMartino, B. 146 Prettlt, G. 283 
Di Santo, M. 277 Rathmayer, S. 259 
Dobson, S. 170 
Donatelli, S. 265 Rehmann, R.M. 303 
Dvorak, JJ. 303 Russo, S. 265 

Russo, W. 277 
Edwards, J. 1 

Sage, P.P. 297 
Fang, N. 283 Santini, M. 220 
Fekete, A. 110 Sayah,A. 86 
Fleming, P.J. 291 Seki, T. 62 
Fletcher, L.R. 220 Shi, L. 158 
Frank, R. 283 
Frattolillo, F. 277 Tyrrell, A.M. 39 
Frey,M. 122 

Uchihira, N. 62 
Giroux, S. 27 
Gorton, I. 50 Villano, U. 310 
Grasso, J.R. 27 

Wadsworth, C.P. 170 
Hiichler, G. 283 Weidmann, M. 259 
Hajji, M.S. 291 WJSZniewski, B. 98 
Honiden, S. 62 
Howell, F. W. 244 Zimeo, E. 277 



www.manaraa.com

KEYWORD INDEX 

Actors 277 
Agent oriented design 27 
Agents 86 
Algorithmic benchmarking 283 
Alternating bit protocol 195 
Annotated process communication graphs 

74 
Application 183 

of AI (expert system) techniques 297 
Asynchronous algorithms 220 
Autoparallelisation 297 

C++ 
CASE environments and support tools 297 
Classification 208 
Co-operation 86 
Communicating processes 86 
Communication events 98 
Communications 39 
Computer-aided control system design 291 
Computer-aided software engineering 291 
Concurrency 158 
Concurrent 

applications 232 
programing 62, 183 
systems 39 

CSP 265 

Dataflow algebra 195 
Debugging 110, 122 
Default sequential principle 62 
Dependability modelling 291 
Dependence analysis 62 
Distributed 

processes 220 
programs 110 
system design 50 
systems 271 

Dynamic 
behaviour 220 
scheduling algorithm 86 

EPOCA 271 

Fault-tolerance 39 
Formal 

methods 110 
specification 195 
verification 195 

GSPN 232 

Heterogeneous computing 310 
Highly-reliable program 62 
Hybrid systems 316 
Hypersequential programming 62 

K-periodicity 220 

Linear temporal logic 183 
Loop parallelization 134 

Mixed language programming 283 
MPI 241 
MPI support 283 
MSC 15 
Multi-agent systems 27 
Multicomputers 277 
Multimedia systems 50 

Network computing 310 
Nondeterminism 62 

Object-oriented parallel programming 277 

Parallel 
control flow 98 
and distributed programs 122 
processing 220, 271 
programs 208 
software engineering 50, 265, 316 
systems 15 

Parallelism 277 
courseware 283 

Parallelization 6: 
Parameterized 

affine recurrence equations 
domains 134 

PARSE 50, 271 
Partial order temporal logic 122 
Performance 220 

evaluation 265, 310 
indices 232 
optimization 15 
prediction 232, 244, 283 

Petri nel/s 220, 265, 316 
Portability 283 
Process 

algebra 170, 195 



www.manaraa.com

control 183 
equivalence 183 

Process-Box 
Profiling 244 
Program analysis 170 
Program 

composition 74 
transformation 170 

PVM 74,310 

Real-time systems 158, 291 
Refinement approach 183 
Reusable components 74 

SDL 15 
Serialization 62 
Sharing 170 
Simulation 110, 310 

applications 27 

Keyword Index 

Smalltalk-80 27 
Software design 39 

engineering 15, 271 

325 

Software engineering model of agents 27 
Software engineering for parallel and 

distributed systems 283 
Spatial overheads 208 
Specification 122 
Structural testing 98 
Structured 

methods 158 
parallel-programming 283 

Temporal logic 316 
Temporal overheads 208 
Timed Petri net 220 
Tools 15 




